
Research Issues in Knowledge-Based Configuration

Abstract
Knowledge-based configuration systems have made their way into industrial practice.
Nowadays, all major vendors of configuration systems rely on some form of declarative
knowledge representation and intelligent search techniques for solving the core
configuration problem, due to the inherent advantages of that technology: On the one hand,
changes in the business logic (configuration rules) can be accomplished more easily
because of the declarative and modular nature of the knowledge bases while on the other
hand highly-optimized, domain independent problem solving algorithms are available for
the task of constructing valid configurations.

Still, the development has not come to an end as - in a world that becomes increasingly
automated and wired together - constantly new challenges for the development of
intelligent configuration systems come in: Web-based configurators are being made
available for large heterogeneous user groups, the provision of mass-customized products
requires the integration of companies along a supply chain, configuration and
reconfiguration of services becomes an increasingly important issue, just to name a few.

This chapter gives an overview on these current and future research issues in the domain of
knowledge-based configuration technology and thus summarizes the state of the art, recent
achievements, novel approaches, and open challenges in the field.

Keywords: Knowledge-based systems, Product configuration systems, Configurator

INTRODUCTION

One of the earliest and most successful expert systems introduced in an industrial
environment was a product configurator, when - in the early 1980's - Digital Corp.
developed the R1/XCON (McDermott, 1982) system for automating the configuration
process for their complex computer systems. Although R1/XCON was one of the first
systems of that kind, two typical aspects in the context of configuration systems have not
changed since then.

(a) It has been proven that using an intelligent product configurator will lead to significant
business benefits: Suitable configurations and accompanying offers can be calculated much
faster, the quality of the configurations is comparable or better than the one of manually-
engineered solutions, and the process itself is less error-prone which in turn leads to
considerable savings for a company (McDermott, 1982; Barker et al., 1989).

(b) There is also another side of the medal, which is for instance documented in (Barker et
al., 1989) – also for the R1/XCON system: The configuration task itself can become very
complex and the corresponding knowledge bases soon have to contain information on
thousands of components and configuration rules, i.e., after ten years of production, the
R1/XCON system contained around 10.000 configuration rules. This in turn leads to
different problems. So, for instance, maintenance of the knowledge base becomes an issue,
in particular in domains where product life cycles are short and changes in the products are
frequent. In addition, when the knowledge bases grow, also the running times for checking
or constructing a configuration can significantly increase, potentially resulting in
performance problems. Finally – as also mentioned already in McDermott (1982) – for all

of the engineering tasks, highly-skilled and trained development staff is needed for
maintaining the knowledge bases and/or improving the configurator software.

Due to the inherent complexity of the task, configuration problems have since then always
been subjects of interest for researchers in different areas, in particular in the field of
Artificial Intelligence (AI). In fact, significant advances have been made since these early,
"rule-based" years: Powerful knowledge representation schemes for configuration
problems have been developed (Mittal, S. & Frayman, F., 1989; McGuiness & Wright,
1998), a formalization of the problem has been done (Felfernig et al., 2004), the invention
of new algorithms was driven by the challenges of the domain (Mittal & Falkenhainer,
1990; Fleischanderl et al., 1988), industrial-strength software libraries are now available
(Mailharro, 1998) and knowledge based configurators are nowadays already incorporated
in standard business software, see for instance (Haag, 1998).

Nonetheless, the developments of today's networked economy constantly bring in new
challenges and requirements for current and future product configuration systems. So for
instance the life-cycles of e.g., electronic products still continue to become shorter and
shorter while on the other hand the products tend to be more complex which in turn
requires even better knowledge-representation and modelling schemes for alleviating the
knowledge-engineering and maintenance tasks. In addition, with the growing complexity
of the knowledge-bases, we also need adequate means and tools to support the error
detection and debugging phases, since standard debugging techniques are insufficient for
such knowledge-based systems.

When looking at current developments from the business perspective, we can observe a
trend that companies today aim at co-operating in supply-chain networks in the process of
manufacturing and provisioning their configurable goods and services. So in many cases,
the customer requirements that determine the design of the final product have to be
forwarded to the partners in the supply-chain while, at on the other hand, overall
consistency of the final configuration has to be ensured.

Another business-related aspect in some domains can be seen in the fact that sometimes a
fully configured product which has been already deployed at the customer's site for years,
e.g., a large telecommunication switch (Fleischanderl et al., 1988), has to be extended or
adapted to reflect new customer requirements. In these cases, the existing configuration has
to be reconfigured and we have to consider different optimization goals, like for instance
preserving most of the existing configuration.

An additional example where new requirements for product configuration systems can be
seen is the fact that nowadays not only technical engineers or sales engineers are the users
of configuration systems as it was in the early years. The Mass Customization paradigm is
applied to various business branches, and in many domains the customers themselves use
the configurator (over the Web) to tailor a product to their specific needs and demands.
This in turn creates new challenging requirements on interactivity for configurators: End-
users can be quite heterogeneous with respect to their background and capabilities, so
things have to be simple for them. On the other hand, users may have different preferences
and capabilities how they want to or are able to express their requirements. As such, a
personalized and more intelligent user interface may be required to guarantee the success
of an online configuration system.

This chapter gives on overview on such current and future research issues for intelligent
product configuration systems and thus summarizes the state of the art, recent
achievements, novel approaches, and open challenges in the field. Quite naturally of
course, the selection of issues is determined by a somehow subjective viewpoint, but it is

based both on long years of active research in the field as well as on the experiences and
lessons learned from international workshops that have been held in the last decade on
major Artificial Intelligence conferences.

KNOWLEDGE REPRESENTATION AND REASONING

Successful applications of configuration technologies can be found in various domains
such as the automotive industry (Freuder et al., 2001), the telecommunication industry
(Juengst & Heinrich, 1998), the computer industry (Barker et al., 1982) or power electric
transformers (McGuiness & Wright, 1998a). Rule-based knowledge representations, such
as used in R1/XCON (Barker et al., 1982), were the starting point for configuration
knowledge representation. In later years, model-based knowledge representations have
been developed which strictly separate domain knowledge from problem solving
knowledge: Such a separation increases the effectiveness of configuration application
development and maintenance (Juengst & Heinrich, 1998; Freuder et al, 2001; Forza &
Salvador, 2002; Mailharro, 1998) since changes in the product knowledge do not effect the
definition of the search process and vice versa. Overall, a comprehensive configuration
environment (Mittal & Falkenhainer, 1990) has to support all major tasks of core
configuration, i.e., guiding the user and checking the consistency of user requirements with
the knowledge-base, solution presentation, and translation of configuration results into
detailed bill-of-materials.

Typically, knowledge-bases are built using proprietary languages, see, e.g., (Franke &
Piller, 2002; Haag, 1998; Forza & Salvador, 2002), where technical experts and knowledge
engineers elicit product, marketing and sales knowledge from domain experts. Knowledge
bases thus consist of a description of the product structure and a set of constraints that
restrict the combinations of components in a configuration result. Configuration problem
solving is in many cases based on a Constraint Satisfaction Problem representation of a
configuration task (Tsang, 1993). Depending on the size and complexity of the problem,
different facets of constraint representations can be applied: In Generative Constraint
Satisfaction (Fleichanderl et al., 1998) components are dynamically generated on demand
during the search process; when using a Dynamic Constraint Satisfaction (Mittal &
Falkenhainer, 1990) approach, depending on a specific state in the search process only a
relevant subset of the defined constraints and variables are active, i.e., are taken into
account for calculating a solution; in Distributed Constraint Satisfaction (Yokoo et al.,
1998), messages about changes in the problem space are exchanged between different local
entities of constraint satisfaction problems. Such a distributed representation can primarily
be applied in different variants of supply chain settings.

Although configuration systems have been successfully applied in various real-world
applications, a number of challenges has to be tackled with respect to configuration
knowledge representation: Knowledge base development is a cooperative process between
technical experts and domain experts and the development of knowledge-bases can be very
expensive (Mittal & Frayman, 1989). In this context, the application of standard
representations can help to reduce development and maintenance costs because standards
are known by technical experts and in many cases are also known by domain experts
(generally non-programmers). Furthermore, information systems departments always aim
at standardization and interoperability between various system components. Therefore,
configuration systems are required to be equipped with standard representations which
contribute to an improved flexibility of a company’s software infrastructure: In the
financial services domain, for instance, standardized interfaces are a major decision

criterion for incorporating a configurator into their software environment. The amount of
resources required to develop and maintain configuration knowledge-bases can be
substantial (see, e.g. Mittal & Frayman, 1998). In many cases, however, a configuration
knowledge base is encoded in the proprietary language of the underlying configuration
environment. This makes related investments particularly unsafe due to the fact that, e.g.,
changing requirements on the configurator application could lead to a need of exchanging
the whole configuration environment (Mittal & Frayman, 1998). In such cases, no support
will be available for easily transforming an existing knowledge-base into the representation
of the new environment. Therefore, the following languages can play an important role in
the context of standardized configuration knowledge and product data representation.

OIL and DAML+OIL (Fensel et al., 2001) are ontology representation languages developed
within the context of the Semantic Web (Berners-Lee, 2001). These languages support the
design of ontologies on the formal basis of description logics. Felfernig et al. (2003) point
out that Semantic Web representation languages are suitable for configuration knowledge
representation. However an additional language is needed supporting an intuitive
formulation of constraints on product structures, especially the definition of aggregation
functions and complex structural properties is not supported by state-of-the-art Semantic
Web knowledge representation languages. With respect to ongoing efforts to extend
DAML+OIL or its successor OWL (van Harmelen et al., 2001), the work of Felfernig et al.
(2003) contributes a set of criteria which must be fulfilled in order to apply those
languages for full-fledged configuration knowledge representation.

Universal Standard Products and Services Classification Code (UNSPSC) is a coding
system organized as product taxonomy. Levels of the taxonomy are segments denoting
aggregations of families (e.g., computer equipment), families as groups of interrelated
categories (e.g., software), classes as a group of elements sharing a common usage (e.g.,
text-editing), and commodity as a group of substitutable products (e.g., Linux text editors).
RosettaNet classification schemes are restricted to the categorization of electronic
equipment. RosettaNet has two taxonomy levels (product groups and products). Both
standards focus on the categorization of products but do not provide mechanisms for
building models of generic product structures. Another standard related to product data
representation is cXML (commerce XML - www.cxml.org) which as well does not provide
any mechanisms for configuration knowledge representation (Schmitz et al., 2004).

The standard for product model interchange (STEP – ISO, 1994) takes into account all
aspects of a product including geometry and even organizational data. The goal is to
provide means for defining application specific concepts for modeling products in a
particular product domain. Such application specific concepts are denoted as application
protocols, which are defined using the EXPRESS DDL. EXPRESS includes a set of
modeling concepts useful for representing configurable products it can, however, not be
used to define enterprise-specific configuration models without leaving the STEP standard:
The reason is that STEP standards define a (although generic) fixed product structure, i.e.,
they do not provide the freedom to design any type of configuration model. If a company
models its products according to STEP, it should use an application protocol in order to
conform to the STEP standard.

The Unified Modeling Language (UML) and the Object Constraint Language (OCL)
(Warmer & Kleppe, 2003) include major language elements needed for the intuitive
representation of configuration knowledge (Felfernig et al., 2002). Such a standardized
language is a crucial success factor for integrating configuration technologies into
industrial software development processes. Object-oriented structure representation
concepts of UML (Dennis et al., 2004; Rumbaugh et al., 1989) and OCL Constraint

Definitions allow the representation of configuration knowledge in a quite natural way:
Product components are represented as classes and constraints between different
components are represented by a set of corresponding OCL navigation expressions, i.e. the
basic concepts provided by UML/OCL should be integrated into existing configuration
environments. From the viewpoint of knowledge acquisition support for configuration
knowledge bases, the integration of industrial standard representations such as UML/OCL
into configurator development environments is one of the major challenges for allowing
effective knowledge acquisition processes, exchangeability of knowledge bases, and
standardized interfaces to existing software components.

DEVELOPMENT AND DEBUGGING SUPPORT

Effective knowledge acquisition and maintenance support is one of the key issues in
building configuration knowledge bases. The application of, e.g., UML/OCL for
configuration knowledge representation (Felfernig et al., 2002) can be seen as a quite
intuitive and understandable representation of configuration knowledge. However, the
application of such modeling languages for knowledge base construction does not
automatically guarantee the validity of the generated knowledge base: Validation is
typically performed by testing the knowledge base using a set of test cases (examples)
which are provided by domain experts or are taken from previously calculated
configurations. If a knowledge base is invalid, i.e., some of the provided test cases are
inconsistent with the actual version of the knowledge base, domain experts and knowledge
engineers are faced with the challenge to identify a set of constraints in the knowledge base
which are responsible for the faulty behavior of the knowledge base. Such a task becomes
even harder when applying rule-based knowledge representations: In such a situation,
domain experts and knowledge engineers need adequate tools that support automated
identification of the faulty parts in a configuration knowledge base. Automated debugging
concepts can improve the effectiveness of configuration knowledge base development
processes by significantly reducing development efforts: If a new version of a
configuration knowledge base is created, regression tests can be automatically triggered in
order to assure that the new version is still consistent with the defined test cases.
Automated regression tests reduce development and maintenance costs since faults in the
knowledge base can be detected early, i.e. they are not propagated to the production
environment.

In order to support an automated detection of faulty constraints in configuration knowledge
bases we can apply concepts from model-based diagnosis (Reiter, 1987): Model-based
diagnosis is characterized as explanation of faulty behavior based on observations of the
behavior of the concrete system (e.g. the behavior of a mal-functioning car engine) and the
comparison with a corresponding system model representing the correct behavior of the
system. The theory of Reiter (1987) includes the basic representational and computational
assumptions which can be applied to a number of application domains. In Reiter (1987), a
system is interpreted as a pair (SD, COMPS) where SD, the system description, is a set of
first-order sentences and COMPS, the system components, is a finite set of constants. An
observation, OBS, of a system is a finite set of first-order sentences. Thus (SD, COMPS,
OBS) denotes a system (SD, COMPS) with observations OBS. A corresponding diagnosis
for (SD, COMPS, OBS) is a minimal set Δ ⊆ COMPS such that SD ∪ OBS ∪ {ab(c)| c ∈
Δ} ∪ {¬ab(c)| c ∈ COMPS - Δ} is consistent. In other words, the assumption that the
components of {ab(c)| c ∈ Δ} behave abnormal together with the assumption that the other
components (i.e., {¬ab(c)| c ∈ COMPS - Δ}) behave normal, is consistent with the given
system description SD and the given observations OBS.

If we now interpret the logical sentences (constraints) of a configuration knowledge base
as system components, we can introduce a configuration knowledge base (CKB) diagnosis
problem and a corresponding configuration knowledge base diagnosis. A detailed
discussion on the application of model-based diagnosis concepts to the automated
debugging of configuration knowledge bases can be found in (Felfernig et al., 2004): A
CKB Diagnosis Problem is a triple (DD, E+, E-), where DD is a configuration knowledge
base, E+ is a set of positive examples (test cases), and E- is a set of negative examples (test
cases). The examples are given as sets of logical sentences. Each example on its own is
assumed to be consistent. Note that a positive test case is an example for the intended
behavior of a knowledge base; a negative test case is an example for an unintended
behavior of a knowledge base (i.e. an example for a result which should not be calculated
by the knowledge base).

A CKB Diagnosis for a CKB Diagnosis Problem is a set Δ ⊆ DD of sentences such that
there exists an extension EX (EX is a set of logical sentences) such that DD-Δ ∪ EX ∪ e+
is consistent ∀ e+ ∈ E+, and DD-Δ ∪ EX ∪ e- is inconsistent ∀ e- ∈ E-. The result of a
diagnosis task is a (minimal) set of constraints of the configuration knowledge base which
should be taken into account in order to make all positive examples consistent with the
knowledge base.

This process of a consistency-based diagnosis of a configuration knowledge base can be
fully automated given a number of pre-defined test cases. The definition of test cases is an
important precondition for the application of model-based diagnosis concepts: On the one
hand, test cases can be derived from former valid configuration results. If such results are
not available, test cases must be either manually specified by domain experts or can be
(semi-)automatically generated from the specification of a configuration knowledge base.
Although testing is considered the most pragmatic and successful technique in quality
assurance, the research field is still insufficiently explored in the context of developing and
maintaining knowledge-based systems (Preece et al., 1997; Pretschner, 2001). The
development of intelligent concepts supporting the automated generation of test suites
should therefore be one of the major focuses of current research. In that context, the major
challenge with respect to validation of configuration knowledge bases is the development
of intelligent concepts that support the generation and administration of test cases. Test
cases can be automatically generated from a given definition of a configuration knowledge
base by calculating possible user interactions (requirements specifications) for predefined
interaction paths. The number of generated test cases has to be further reduced in order to
make their validation feasible for domain experts within a reasonable time span Felfernig
et al., 2005).

DISTRIBUTED CONFIGURATION

Most of the existing approaches in the area of knowledge-based product configuration rely
on the assumption that the configurable product is provided by one single supplier who
assembles the product according to the customers’ needs. However, in today’s networked
economy, the provision of products and services in many domains requires the integration
of different companies in a supply-chain. Furthermore, in many cases the sub-assemblies
are again designed to be configurable and the detailed configuration of the sub-assembly
partially depends on the configuration parameters of the product as a whole. The standard
approach to solve such problems is to integrate the required configuration rules into a
central knowledge base. While this seems intuitive and practicable at a first glance, such an
approach may have the drawback that the resulting knowledge base will soon become

complex, thus increasing the probability of errors and consequently maintenance costs. In
addition, it may be undesirable for a supplier to expose all its configuration logic - which is
in many cases connected to a company’s pricing rules - for confidentiality or
organizational reasons.

In the CAWICOMS project (Ardissono et al., 2000, Ardissono et al., 2003), a consortium
strongly rooted in telecommunications industry was piloting a scenario of cooperating
configuration systems in the domain of IP-based Virtual Private Networks (IP-VPN). In
that business case, a reseller is contracting multi-national IP-VPN solutions to its clients:
The reseller subcontracts parts of the network to different telecommunication service
providers that might themselves introduce sub-suppliers. In order to generate a full
configuration of the overall solution including e.g. IP-settings, internal routings and
additional hardware requirements, the cooperation of the local problem solvers of the
involved business entities is necessary. Thus, the value chain has a networked structure,
where each node can be represented by a configuration agent; in addition, mediating
components were introduced for the co-ordination of the different configuration systems.

The main findings of the project with regard to distributed configuration and issues for
future work in the area can be summarized as follows.

(a) The interoperation of different configuration systems requires the establishment of a
shared view on the interdependent fractions of the product model. Therefore, a
common language and ontology has to be employed for describing the configurable
product configuration problem in a tool-independent manner. A proposal for such a
common knowledge representation mechanism and exchange format based on a
general configuration ontology in the sense of (Felfernig et al., 2002) has been
developed within the project. However – as already sketched in the section on
knowledge representation – up to now there exists not yet a lingua franca for
exchanging configuration knowledge, which is one of the major prerequisites needed in
such distributed configuration scenarios.

(b) Standard algorithms for distributed solution search like Distributed Constraint
Satisfaction (Yokoo, 2001) are not directly applicable for distributed configuration
problems. Thus, domain-specific distributed algorithms, see e.g. (Ardissono et al.,
2003; Zanker, 2002) which address the particularities of the problem domain have
been designed and prototypically implemented in the CAWICOMS project. However,
there is still room for improvement to ease the integration of distributed solving
protocols with the different heterogeneous configuration systems on the market.

RECONFIGURATION

Nearly all of the existing product configuration frameworks, problem solving algorithms,
and configurator applications are designed for the use in business scenarios in which a
customer-specific product variant is constructed "from scratch" (Männistö et al., 1999).

Still, there are many domains in which the products or services have a longer life time and
for which it is common that the original configuration has to be adapted or extended over
time. A typical example can for instance be found in the domain of the configuration of
large telecommunication switches, see, e.g. (Fleischanderl et al., 1998): These large-scale
complex electronic devices are configured once and set up at a location and are then in
productive years for several years or even decades. During this period of productive use,
there might be several reasons, why the original configuration has to be changed or
extended: For instance, the requirements may change over time when new technologies

become available or more switching-capacity has to be provided. On the other hand, it is
also possible that individual broken components have to be replaced and only newer
versions of these components are available which have to be plugged into an existing
configuration.

Quite obviously, the optimization goals for configuration from scratch and reconfiguration
are not the same: While in an initial configuration the main focus will be in general on
minimizing the number of components needed in the system, the reconfiguration goal in
most cases is to preserve as many parts of the existing configuration as possible. Alone
when considering these two different goals of optimization, we see that a system which is
designed to support reconfiguration has to be augmented with additional knowledge,
configuration logic, or adequate heuristics beside the core business and configuration rules.

In principle, two different approaches for dealing with that challenge can be identified:
First, the required reconfiguration knowledge can be modelled externally as an add-on to
the existing knowledge base. Such an approach is for instance proposed in (Männistö et al.,
1999), where reconfiguration operations consisting of pre-conditions and actions are made
explicit in a separate “reconfiguration model”. Given an existing configuration and a set of
new requirements, the reconfiguration problem then basically consists of finding a subset
of these reconfiguration operations that change the system in a way that the new
requirements are fulfilled. The main advantage of such an approach lies in the fact that the
search space for possible modifications is limited by the number of existing
reconfiguration operations: If we assume that none of the reconfiguration operations will
lead to a violation of the original configuration constraints, the problem variables of the
typically larger core configuration problem do not have to be taken into account during
search. The main drawback of such an approach however, can be seen in a) the problem of
ensuring that particular consistency property for complex knowledge bases and b) that the
reconfiguration rules have to be maintained and updated every time the core configuration
knowledge base is changed.

The other principle approach is to include all reconfiguration alternatives and –knowledge
in the knowledge base from the beginning and only change the optimization goal when it
comes to reconfiguration such that configurations which re-use more of the existing
components are preferred over others. While such an approach in theory will lead to
"optimal" reconfigurations and no additional modelling is required, the search problem is
in practice intractable with today's search technology for realistic scenarios. In fact, in
many cases even the original configuration may already be suboptimal due to the
complexity of the search space and the use of domain-specific heuristics (Fleischanderl et
al., 1998) which are needed to find a good solution in an appropriate time frame. In
addition, many problem solvers (e.g., based on Constraint Satisfaction) are based on
Constructive Search and Backtracking, i.e., the configurations are incrementally
constructed from scratch during the search process. Therefore, in our opinion, local search
techniques or evolutionary algorithms are more promising for reconfiguration problems
and should be further investigated in future research: As a core characteristic, these
algorithms start from an existing configuration (or variable assignment) and incrementally
try to improve the current solution by exploring neighbouring solutions which has a strong
correlation to the reconfiguration problem.

A special form of reconfiguration support can be seen in what is called Parametric Re-
design: Such approaches are basically suitable for configurable systems that are already
"designed for reconfiguration". In such systems, the basic structure of the product remains
static (e.g., there exists a given number of connected components), but the individual
components can be parameterized such that they fulfil specific requirements. In (Stumptner

& Wotawa, 1999), for instance, such an approach is described for the domain of telephone
networks: Given an existing network configuration and a new functional requirement (in
that case a certain call type) the problem is to reconfigure the nodes in the telephone
network such that this functionality becomes available. In their approach, Stumptner and
Wotawa propose to employ model-based diagnosis techniques for determining these
parameter sets and thus develop a general framework for parametric reconfiguration. The
search space in their approach remains manageable due to the fact that they limit the
reconfiguration options to alternative parameter settings. Model-based diagnosis
techniques are also used for reconfiguration in the approach proposed by Crow & Rushby
(1991): In contrast to the work of Stumptner and Wotawa, however, they base their
approach on explicit reconfiguration knowledge. Their main goal was to extend existing
diagnosis techniques toward automatic repair, where the goal not only is to identify faulty
components of a system but also compute a set of actions to be taken in order to re-
establish a functioning system.

From a business perspective, re-configuration (adaptation/extension) of already installed
systems falls into the category of after-sales and maintenance activities, which we see as
an increasingly important business area for many of today's companies (Männistö et al.,
1999). As such, we argue that adequate tool support for such high-quality customer
services can be extremely valuable for companies, in particular as a competition factor in
markets where the products of different manufacturers are comparable and differentiation
from the market competitors has to be achieved by the provision of such add-on services.

In the context of reconfiguration and after sales services, we also see versioning and
evolution of configuration knowledge bases as additional, future challenges in the area of
knowledge-based configuration, in particular, as there exists nearly no support in current
configurator systems.

PERSONALIZED USER INTERACTION

In Business-to-Consumer environments, product configuration systems are one of the
information systems that are directly located at the interface between customers and
producers. They allow the automation of the order taking process by capturing customer
requirements without involving human intermediaries in an interactive process. This means
that customers are enabled to self-configure their products to their individual requirements
in web-based applications, which has been proven to lead to a significant reduction of costs
and errors. Thus, product configuration systems are one of the main enablers of the Mass
Customization paradigm which aims at providing highly tailored products and services to
end users.

While technical experts have been the dominant user group of configuration systems in the
early years, nowadays they are used by quite heterogeneous groups of online end users.
Thus, these users have typically different backgrounds in terms of experience or skills ore
are simply different in the way they prefer to or are able to express their needs and
requirements.

Consequently, it is obvious that static “one-style-fits-all” approaches are not adequate for
user interfaces of configuration systems in many of current application environments. In
web-based applications, for instance, HTML forms, with which the user can specify
technical product details in order to find a valid product configuration, are common.
However, such static state-of-the-art technologies can not ensure that the final configured
product is tailored to the real customer preferences and expectations. Thus, the quality of

the achieved results can be significantly improved when the system interacts with the user
in a personalized way.

Up to now, there have been significant efforts for personalizing web-based user interfaces
of configuration systems. Besides “standard” personalization techniques for hypermedia
applications (Kobsa et al., 2001), there are several approaches that are specific for
personalization in the domain of configuration systems. In general, we can distinguish two
basic strategies how user requirements can be elicited: (a) The system poses explicit
questions to the user; (b) the system applies indirect reasoning techniques about, for
instance, already gathered information about the current user or some stereotype
classification mechanisms.

In the CAWICOMS project (Ardissono et al., 2000, Ardissono et al., 2003), such a hybrid
approach was chosen for the domain of configuration of complex telecommunication
switches. The CAWICOMS system automatically adapts its user interaction to the user’s
skills by varying the complexity level of the configuration process based on information
about the current user stored in a long-term user model (Thompson et al., 2004); on the
other hand, a rule-based system is applied to determine a more “overall” personalization
strategy. For instance, in the CAWICOMS system the user can delegate decisions about
feature values to the system which infers the most suitable setting. Furthermore, the system
hides or presents some details in the configuration process in order to focus the
presentation on the most relevant information according to the current user’s skills.

One of the major challenges of a hybrid approach, however, lies in the fine-tuning of the
interoperation between the two techniques. The explicit personalization rules in such a
system are in many cases driven by the estimates contained in user models based on
Bayesian Networks, cf. for instance the POET tool (Royalty et al., 2002). As a side effect,
small changes in such a user model can cause a threshold to be exceeded such that an
expert rule fires causing unexpected major effects.

Today, systems are wide-spread that base the personalization solely on long-term user
models, reasoning on past behaviour, or stereotypes. These systems are producing
promising results in particular in domains with re-visiting users, see for instance
(Thompson et al., 2004; Sung, 2002). For first-time visitors, however, they typically face
the new user problem, i.e. in absence of suitable data for a new user they can base their
personalization simply on a poor user model. In addition, user models that are maintained
by such systems can often only capture high-level characteristics of the customer to be
theoretically reusable across different applications.

Therefore, we claim that it is particularly important to consider extensive personalization
of the interaction between the user and the configuration system to reach better results and
higher customer satisfaction. Thus, it is not sufficient to adapt the content and the
presentation of configuration application to the current user’s skills, but also to tailor the
interaction level (Jannach & Kreutler, 2005). For example, if we think of a system for
configuring personal computers, there will be users who want to specify technical details
of the desired model, whereas others will only be able to express for what purposes they
intend use the computer; others again only want to compare preconfigured models and
decide by themselves. Up to now, such a personalization of the interaction with the user
was primarily addressed in the context of recommender systems.

McGinty and Smyth (2002) propose an approach for recommender systems that is based
on a more casual conversation. This means that there should be several degrees of
feedback that an online user can provide during the dialog. For instance, leading users
through deep dialogs that replicate customer buying models from real world is not always

appropriate in online settings. The authors argue that there should also be a low-cost form
of feedback for users instead of complex dialogs. They propose a comparison-based
approach for product recommendation, in which the user is asked to choose a
recommended item as a (positive or negative) preference. The further recommendation is
based on the difference of the preferred products and the remaining alternatives.

In a further investigation, McGinty and Smith (2002a) give an overview on different
techniques for user feedback which can be based, e.g., on value elicitation, tweaking,
ratings, and preferences. In their work, they focus on a low-cost preference-based feedback
model which is evaluated in a recommendation framework. The proposed feedback
techniques for recommender systems can also be applied in the context of configuration
systems. For instance, comparison-based approaches could be applied when the final
configurations are presented to the user.

In the domain of configuration systems, Pu et al. (2003) consider preference elicitation as a
fundamental problem: Building on experiences in building decision support systems in
various domains, they identify some principles for designing of the interactive procedure
of finding a suitable configuration in the solution space. In a survey of ten commercial
online flight reservation systems, they find out that a personalized user interaction
significantly improves the preference elicitation process for the end-user. They allow users
to state values for those options that correspond to their main objectives, which leads more
quickly to a more accurate preference model. Furthermore, example critiquing in a
minimal context, i.e. making critiques on a personalized (minimized) set of attributes, is
also identified as adequate means. Finally, the authors also consider the visualization of the
result set with the possibility of revising previously stated preferences during the elicitation
process as crucial because users can immediately see the consequences of their stated
preferences and possible changes.

EXPLANATIONS & PROBLEM RESOLUTION

Most of today's product configuration systems are highly interactive software applications.
Typically, users incrementally enter their requirements while the system continuously
checks the constraints, eventually reports conflicts or removes inconsistent options. Then,
the user may be given the possibility to revise his/her requirements and finally, the system
in many cases automatically completes the configuration by, e.g., adding some mandatory
components or by setting some variables with default values.

In particular for configuration applications where the end user is not a technical expert, e.g.
in a Web-based environment, it is important that the end user develops a good
understanding of the behaviour and logic of the configurator. Typical questions that arise
in such interactive sessions are, for instance, "why I am not allowed to select this option
anymore?", "what decision do I have to retract, if I want to have a particular
functionality?", or "why was an option automatically set by the configurator with a certain
value?". If the user is not provided with answers to these questions, there is a high chance
that the user's confidence in the final configuration is low or he/she is frustrated when
using the system because no adequate help was available during the interactive
configuration session. Overall, we therefore claim that the provision of explanations can
significantly help to increase the acceptance and value of a configuration system.

In fact, the ability to provide explanations can be seen as one of the key features of
knowledge-based systems in general and there also exists long research history on how
problem solvers can be built that are capable of e.g., justifying conclusions, detecting

inconsistencies, or keeping track of dependencies, see (Forbus & deKleer, 1993) for an
overview. Still, many of the proposed approaches like so-called Truth Maintenance
Systems are limited in their applicability, since the size of the dependency network which
has to be maintained soon gets too large to manage problems of realistic size.

Today, Constraint Satisfaction (Tsang, 1993) is the most popular technique for
representing configuration problems. Therefore, most of current research efforts in the area
of advanced user interaction and explanations are based on this technology. On the other
hand, many researchers also use configuration problems as a test-bed for new algorithms
because of the typically high complexity that is involved in solving such problems. A
recent contribution in that area was introduced by Junker (2004), who developed
QuickXPlain, a general algorithm for fast extraction of dependencies and detection of
minimal conflicts for arbitrary constraint propagation and inference algorithms, which is in
particular of importance because high-performance problem solvers in many cases lack the
ability to provide explanations. With the help of QuickXPlain, some of the answers
mentioned above (e.g., why a certain value was chosen) can be answered without the need
of costly book-keeping of justifications and in cases, where a black-box propagation
engine is used that does not record the explanations.

Beside Junker's algorithm also other proposals for computing explanations for Constraint
problems have been developed in recent years, see e.g., (Rochart et al., 2003; Freuder et al,
2001; Jussien, 2001). Still, many of them rely on the abduction principle which can lead to
the problem of "spurious explanations" which were dealt with by Friedrich (2004). In this
paper, the notion of a "well-founded explanation" was introduced which helps us to
eliminate such inconsistent explanations.

Conflict detection and explanation of the situation is, however, only one part of the
problem. In fact, for the end user, it may be desirable to get some advise how to deal with
the problematic situation, i.e., how conflicts can be resolved and consistency can be
restored. The work of Amilhastre et al. (2002) is one example of research in that direction.
The main problem of consistency restoration in constraint-based configuration problems
lies in the fact, that most current approaches for performing the required tasks are
computationally expensive while at the same time the response times in an interactive
configuration session are very restricted. The authors therefore propose a technique that
relies on pre-compilation of the problem, which is in our opinion in general a technique
which is also promising for other problem domains that require fast response times. In their
work, the original constraint problem is pre-processed offline and an automaton is
compiled that represents to set of possible solutions. At run-time, the generated data
structures can then be exploited for consistency maintenance and restoration in an efficient
way.

Despite these recent advantages, we still can identify additional challenges that have to be
addressed in the context of explanations and consistency restoration in interactive
configurator applications: Although there are already first commercial solutions that
incorporate explanation facilities (like Configurator software), support for repair in case of
inconsistent situations cannot be found in today's systems. We also think that still better
algorithms are required in that context that for instance take the particularities of
configuration problems better into account – in contrast to only viewing the configuration
problem as a (binary) Constraint Satisfaction Problem.

From our subjective perspective, another challenge in that context lies in the automated
construction of understandable explanations: If we look at what we can get from current
configurator software solutions is in many cases not more than a trace of the inferences

(e.g., propagations) that were made by the problem solver. In the best case, such traces are
understandable for the knowledge engineer who designed the knowledge base, but not for
the end user. Furthermore, we think that there is also an unexploited potential for
personalization in explanations: Depending on the goal one wants to achieve with the
explanations, for instance, increasing the user's confidence or helping the user to
understand the logic behind, the style or technical depth of the explanations could be
varied.

CONCLUSIONS

The technological and economical environment in which product configuration systems are
embedded is rapidly evolving, which – as a consequence – constantly creates new
challenges for today's and future software systems that shall efficiently support the process
of configuring products and services according to the customers' needs. Although there
exists a long history of applying knowledge-based technology for solving configuration
problems, further research in various directions – from knowledge representation, over
problem solving, or personalization – will be required to cope with these new
requirements. Within this chapter, an overview on these new challenges was given and
recent developments and novel approaches in knowledge-based configuration technology
were summarized.

REFERENCES

Amilhastre, J., Fargier, & H., Marquis, P. (2002) Consistency Restoration and explanation
in dynamic CSPs - Application to Configuration. Artificial Intelligence, 135, 199-234.

Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
& Zanker, M. (2000) Personalizing on-line configuration of products and services, In
Proceedings of the 15th European Conference on Artificial Intelligence, Lyon, France, IOS
Press, 225-229.

Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
& Zanker, M. (2003) A Framework for the Development of Personalized, Distributed Web-
Based Configuration Systems, AI Magazine, 24(3), Fall 2003, p. 93-110.

Barker V.E., O'Connor D.E., Bachant J.D., & Soloway E. (1989) Expert systems for
configuration at Digital: XCON and beyond. Communications of the ACM, 32(3), 298-
318.

Berners-Lee T. (2001) Weaving the Web. Harper Business.

Crow, J. & Rushby, J. M. (1991) Model-Based Reconfiguration: Toward an Integration
with Diagnosis, National Conference on Artificial Intelligence – AAAI'91, AAAI Press,
836-841.

Dennis A., Wixom B., &Tegarden D. (2004) System Analysis and Design with UML
Version 2.0: An Object Oriented Approach. John Wiley & Sons, 2nd edition.

Edwards K. & Pedersen J. (2004) Product Configuration Systems – Implications for
Product Innovation and Development, In: Proceedings International Conference on
Economic, Technical and Organisational aspects of Product Configuration Systems,
Kopenhagen, Denmark, 231-239.

Felfernig A., Friedrich G., Jannach D., & Zanker M. (2002) Configuration Knowledge
Representation Using UML/OCL. In: Proceedings of 5th International Conference on the
Unified Modeling Language (UML 2002), Dresden, Germany, 49-62.

Felfernig A., Friedrich G., Jannach D., Stumptner M., & Zanker M. (2003) Configuration
knowledge representations for Semantic Web applications, Artificial Intelligence in
Engineering, Design and Manufacturing, 17(3), 31-49.

Felfernig, A., Friedrich, G., Jannach, D. & Stumptner, M. (2004) Consistency-based
diagnosis of configuration knowledge bases. Artificial Intelligence, 152(2). 213-234.

Felfernig A., Isak K., & Kruggel T. (2005) Testing Knowledge-based Recommender
Applications. OEGAI Journal, Special Issue on Recommender Systems, 24(4), 12-18.

Fensel D., van Harmelen F., Horrocks I., McGuinness D., & Patel-Schneider P. (2001)
OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2),
38-45.

Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., & Stumptner, M. (1998)
Configuring large systems using generative constraint satisfaction. IEEE Intelligent
Systems, July/August 1998, 59-68.

Forza C. & Salvador F. (2002) Managing for variety in the order acquisition and
fulfillment process: The contribution of product configuration systems. International
Journal of Production Economics, Elsevier, Vol. 76, 87-98.

Franke N. & Piller F.T. (2002) Configuration Toolkits for Mass Customization: Setting a
Research Agenda, Working Paper No. 33 of the Department of General and Industrial
Management, Technische Universität München, ISSN 0942-5098.

Friedrich, G. (2004) Elimination of Spurious Explanations. In: Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain. IOS Press,
813–817.

Forbus, K., & deKleer, J. (1993) Building Problem Solvers. MIT Press.

Freuder, E., Likitvivatanavong, C., & Wallace, R. J. (2001) Deriving explanations and
implications for constraint satisfaction problems, In: Principles and Practice of Constraint
Programming - CP 2001, Springer LNCS 2239, Paphos, Cyprus, 585-589.

Haag, A. (1998) Sales Configuration in Business Processes. IEEE Intelligent Systems,
13(4), 78-85.

ISO (1994) Standard 10303-1: Industrial automation systems and integration – Product
data representation and exchange – Part 1: Overview and fundamental principles.

Jannach, D. & Kreutler, G. (2005) Personalized User Preference Elicitation for e-Services,
In: Proceedings of IEEE International conference on e-Technology, e-Commerce and e-
Service, Hong Kong, p. 604-611.

Juengst E.W. & Heinrich M. (1998) Using Resource Balancing to Configure Modular
Systems. IEEE Intelligent Systems, Special Issue on Configuration, 13(4), 50-58.

Junker U. (2004) QuickXplain: Preferred Explanations and Relaxations for Over-
Constrained Problems. Proceedings AAAI'2004, San Jose, 2004, pp. 167-172.

Junker U. (2001a) Preference programming for configuration. In: Proceedings of
Workshop on Configuration (IJCAI'01), Seattle, WA, 50-56.

Jussien, N. (2001) e-constraints: explanation-based Constraint Programming, In: CP'01
Workshop on User-Interaction in Constraint Satisfaction.

Kobsa, A, Koenemann, J., & Pohl, W. (2001) Personalized Hypermedia Presentation
Techniques for Improving Online Customer Relationships, The Knowledge Engineering
Review, 16(2), 11-155.

Mailharro, D. (1998) A classification and constraint-based framework for configuration.
Artificial Intelligence in Engineering, Design and Manufacturing, Vol. 12(4). 383–397.

Männistö, T., Soininen, T. Tiihonen, J., & Sulonen, R. (1999) Framework and conceptual
model for reconfiguration. In: Papers from the AAAI Configuration Workshop, AAAI
Technical Report WS-99/05. AAAI Press.

McDermott, J. (1982) A Rule-Based Configurer of Computer Systems. Artificial
Intelligence 19 (1), 39-88.

McGuiness, D.L. & Wright, J.R. (1998) Conceptual modelling for configuration: A
description logic-based approach. Artificial Intelligence in Engineering, Design and
Manufacturing (AI EDAM), 12(98), 33–344.

McGuiness D. & Wright J. (1998) An Industrial Strength Description Logics-Based
Configurator Platform, IEEE Intelligent Systems, Special Issue on Configuration, 13(4),
69-77.

McGinty, L. & Smyth, B. (2002) Deep Dialogue vs. Casual Conversation in Recommender
Systems, In: Proceedings of the Workshop on Personalization in eCommerce at the Second
International Conference on Adaptive Hypermedia and Web-Based Systems (AH-02),
Universidad de Malaga, Spain, 80-89.

McGinty, L. & Smyth, B. (2002a) Comparison-Based Recommendation, Lecture Notes of
Computer Science 2416, Proceedings of the 6th European Advances in Case-Based
Reasoning, Springer, 575-589.

Mittal, S. & Falkenhainer, B. (1990) Dynamic Constraint Satisfaction Problems.
Proceedings of 8th National Conference on Artificial Intelligence, AAAI-90, 25-32.

Mittal, S. & Frayman, F. (1989) Towards a Generic Model of Configuration Tasks. In:
Proceedings of International Joint Conference on Artificial Intelligence, IJCAI-89, 1395-
1401.

Pretschner, A. (2001) Classical search strategies for test case generation with Constraint
Logical Programming. In: Proceedings of Workshop on Formal Approaches to Testing of
Software, Aalborg, Denmark, 47-60.

Pu, P., Faltings, B., & Torrens, M. (2003) User-Involved Preference Elicitation, In
Proceedings 18th International Joint Conference on Artificial Intelligence (IJCAI’03),
Workshop on Configuration, Acapulco.

Reiter, R. (1987) A theory of diagnosis from first principles. Artificial Intelligence 23(1),
57–95. Preece, A., Talbot, S., Vignollet, L. (1997) Evaluation of Verification Tools for
Knowledge-Based Systems, International Journal of Human-Computer Studies, 47, 1997,
629-658.

Rochart, G., Jussien, N., & Laburthe, F. (2003) Challenging explanations for global
constraints, in: CP'03 Workshop on User-Interaction in Constraint Satisfaction, Ireland.

Royalty, J., Holland, R., Goldsmith, J., & Dekhtyar, A. (2002) POET: The online
Preference Elicitation Tool, In: Proceedings of AAAI'02 Workshop on Preferences in AI
and CP: Symbolic Approaches, Edmonton, CA.

Rumbaugh J., Jacobson I., & Booch G. (1989) The Unified Modeling Language Reference
Manual. Addison-Wesley.

Schmitz V., Leukel J. & Kelkar O.: (2004) XML-based Data Exchange Of Product Model
Data in E-Procurement And E-Sales: The Case of BMECAT 2.0, In: International
Conference on Economic, Technical and Organisational aspects of Product Configuration
Systems, Kopenhagen, Denmark, 97-108.

Stumptner, M. & Wotawa, F. (1999) Reconfiguration using Model-based Diagnosis, In:
Proceedings of the International Workshop on Diagnosis (DX99), Scotland.

Sung, H.H. (2002) Helping Customers Decide through Web Personalization, IEEE
Intelligent Systems, 17(6), 34-43.

Thompson, C.A., Goeker M.H., & Langley, P. (2004) A Personalized System for
Conversational Recommendations, Journal of Artificial Intelligence Research, 21, 393-
428.

Tsang, E. (1993) Foundations of Constraint Satisfaction, Academic Press, New York.

van Harmelen F., Patel-Schneider P.F., & Horrocks I. (2001) A Model-Theoretic Semantics
for DAML+OIL. Retrieved in Dezember 2005 from http://www.daml.org.

Warmer J., & Kleppe A. (2003) The Object Constraint Language 2.0. Addison Wesley.

Yokoo M., Durfee E.H., Ishida T., & Kuwabara K. (1998) The distributed constraint
satisfaction problem. IEEE Transactions on Knowledge and Data Engineering, 10(5), 673-
685.

Yokoo, M. (2001) Distributed Constraint Satisfaction. Springer Berlin New York.

Zanker, M. (2002) Distributed Configuration, PhD thesis, University Klagenfurt, Austria.

