

© Rinton Press

RAPID DEVELOPMENT OF KNOWLEDGE-BASED
CONVERSATIONAL RECOMMENDER APPLICATIONS WITH ADVISOR SUITEa

Dietmar Jannach and Gerold Kreutler

Institute of Applied Informatics

University Klagenfurt, A-9020 Klagenfurt
dietmar.jannach @ifit.uni-klu.ac.at, gerold.kreutler@ifit.uni-klu.ac.at

Received (to be filled by the JWE editorial)
Revised (to be filled by the JWE editorial)

Knowledge-based recommender systems are Web-based applications that exploit deep domain knowledge
for generating buying proposals that match the individual needs and requirements of an online user. As in
many domains the detailed customer requirements have to be elicited in an interactive dialog before the
recommendation can be made, the development and in particular also the maintenance of the dynamic Web
pages that form this personalized dialog are critical tasks, mostly because of the typically strong
interdependencies between the recommendation and personalization knowledge.
In this paper, we present ADVISOR SUITE, an integrated, domain-independent environment for the
development of highly-interactive, personalized recommender applications. The main pillars of the
presented system are a) an integrated, model-driven approach for designing all the required
recommendation-, personalization- and interaction knowledge, and b) a mechanism that allows for the
automatic generation of Web applications, which is of particular importance in prototyping-based,
evolutionary development approaches. On the basis of the experiences we have made with the system in
several industrial projects, we finally summarize key criteria and best practices of how to efficiently
develop high-quality recommender applications with ADVISOR SUITE.

 Key words: Interactive Recommender Systems, Model-driven Web Application Development
 Communicated by: (to be filled by the JMM editorial)

1 Motivation and Background

Recommender systems are Web-based software applications that have proven to be a valuable
means to support the online customer in his decision-making process [1, 5, 39, 49, 59]. One of the
most prominent examples is Amazon.com's online book store, a system that bases its
recommendations both on an analysis of the users' past buying behavior and on the ratings of a large
user community. Despite the broad success of collaborative and community-based approaches to
product recommendation [1, 26, 39], there exist some well known limitations of these systems, most
importantly with respect to their applicability to domains beyond "quality-and-taste" or their limited
capability of explaining why a certain item is recommended. With the goal of broadening the
application scope of recommender systems, in recent years therefore interactive and conversational

a This paper builds upon and continues the work presented in [30, 32, 33] and [34].

2 Rapid Development Of Knowledge-based Conversational Recommender Applications

approaches to product recommendation gained in importance [10, 18, 29, 45, 50, 54, 56, 60]. The
main characteristic of these systems is that they aim at eliciting the customer's needs and preferences
interactively. This can be done, for instance, by directly questioning the user about the desired
functionality and specific product features or by allowing the user to give feedback on the system's
proposals (like in critique-based recommender systems [56]). Thus, when more knowledge about the
customer's real needs is available, other forms of recommender applications become possible. By
relating customer requirements to product characteristics, these systems can, for instance, reason
about how useful certain products for a customer are based on utility functions or business rules; on
the other hand, explicit knowledge about the needs can also help us to compute better, user-specific
explanations as to why a certain product was recommended. Note, however, that in general such
detailed knowledge about the current customer's needs cannot be easily learned from the past buying
behavior or other users’ ratings alone.

This paper deals with a certain class of conversational and knowledge-based recommender
systems, which are also referred to as sales advisory systems in literature [18, 19, 32, 60]. In general,
in conversational approaches a special requirement elicitation phase is needed, in which the user can
incrementally enter or revise his personal preferences. However, finding out what the customer
really needs can be a challenging task for different reasons. If we, for instance, think of a Web-based
advisory application for digital cameras, we see that Web users can significantly differ with respect
to the background they have in the domain. Whilst some expert users might prefer to specify
technical requirements only, others might want to state their preferences on the functionality that
should be provided by the camera, as they are not well-acquainted with the technical characteristics.
For novice users, finally, it could be helpful if the system provides additional guidance during the
dialog.

Many of these challenges of preference elicitation can be addressed by using multi-step,
personalized elicitation dialogs [30, 33], which help us to overcome the limitations of simple
interaction models as depicted in Figure 1. On the left hand side, a simple two- or three-phase
interaction model is shown, in which the product proposals are immediately presented after all
requirements have been entered in a previous step; explanations are only possible if the underlying
algorithm for proposal generation is capable of providing such explanations. On the right hand side
of Figure 1, a more complex interaction graph for a personalized advisory application in the sense of
[16] and [33] is sketched. In these applications, several interaction sequences of questions and dialog
pages are possible; the actual path is dynamically determined by the characteristics of the current
users. In addition, the contents of the individual pages to be presented to the user can be personalized
[30]. Finally, special pages for explanations or additional hints can be part of the recommender
application.

The problem with these approaches, however, is that the implementation of such a complex
behavior in a highly-interactive, personalized Web application is typically costly and time-
consuming. On the one hand, personalization in general is a knowledge-intensive task [37] which
means that the required personalization logic has to be acquired, made explicit, and stored in some
underlying knowledge base.

D. Jannach and G. Kreutler 3

User input
specification

Presentation of
proposal

submit revise

Explanation

why?
back

Simple interaction model Conversational interaction model

A

B C

D

E

Presentation
of proposal

Expla-
nation

F Hint

G

Conditional
transition

Personalized
dialog page

Comparison

Phase 1

Phase n Dialog pages /
 Interaction steps

Transition

BASIC INTERACTION MODEL
VS.
PERSONALIZED, GUIDED
DIALOGS

Figure 1: Interaction Models.

In addition, in conversational and knowledge-based approaches to product recommendation,
also the core recommendation logic (e.g., what questions can be asked, how do they relate to product
characteristics) needs to be encoded in an underlying knowledge base. Furthermore, we also see that
the two pieces of knowledge cannot be treated independently. Thus, an approach based on encoding
only a part of the required knowledge in a declarative knowledge store and the other parts (like the
interaction, presentation, or personalization knowledge) in procedural program logic is not to
adequate, in particular when we think of knowledge acquisition, prototype and system development
costs, or maintenance aspects.

In this paper, we describe a model-driven, rapid application development approach as well as an
integrated development environment (ADVISOR SUITE [19, 32, 33]) for the construction of
knowledge-based, conversational recommender applications for arbitrary domains. At the very core,
the proposed approach is based on domain-specific, conceptual models that are used for designing
the recommendation problem as well as additional interaction-, navigation-, and personalization
knowledge. The integrated development environment ADVISOR SUITE presented in the paper features
several user-oriented graphical editors for acquiring these models and also comprises a component
capable of generating an executable, highly-dynamic Web application from these definitions. This
particular feature of automated application assembly also serves as a basis for the proposed
incremental, prototyping-based development process, with which we have successfully employed in
numerous real-world applications of the system. Finally, as constant quality assurance is crucial in
rapid application development processes based on evolutionary prototyping, the system also
comprises different mechanisms and components for interactive testing, knowledge-base validation,
and automated test-case generation.

The paper is organized as follows. In Section 2, we sketch how recommender applications built
with ADVISOR SUITE are perceived by end users and give an architectural overview of the system's
components. In Sections 3 and 4, the general structure and characteristics of these interactive

4 Rapid Development Of Knowledge-based Conversational Recommender Applications

recommender applications are described and we show how the different pieces of knowledge can be
modeled within our framework. Section 5 describes on a technical level how the presented system
supports the process of generating functional Web application from the information contained in the
different models and how the generated applications can be customized and extended. Afterwards, in
Section 6, we discuss the best practices and experiences of managing development projects for
knowledge-based, interactive recommenders. After giving an overview on related work in the area in
Section 7, the paper ends with a summary of the contributions of this work.

2 System Overview

Figure 2 depicts the end user's view on a typical application built with ADVISOR SUITE.
Typically, the user is guided through an interactive and personalized dialog, in which the system
elicits the customer requirements by asking a series of questions. Throughout the dialog, the system
constantly monitors the user's behavior and inputs and dynamically reacts, e.g., by determining the
next questions to be asked and their presentation style, by reporting conflicts in the requirements, or
by displaying other opportunistic hints and explanations depending on the current user’s profile.
Figure 2 shows different screenshots from a generated recommender application. The larger window
shows a question to the end user and a set of predefined answers, which have been designed with the
help of the ADVISOR SUITE tools. The system's decision of selecting this question as the next one is
determined by the set of previous user answers and the defined dialog model. The smaller window in
Figure 2 labeled with "Conflicts and Hints" shows an opportunistic hint; the criteria for displaying
this personalized add-on information have been again defined at design time. The "Repair handling"
window illustrates some typical functionality of knowledge-based approaches, i.e., the capability of
dealing with contradicting or unfulfillable customer requirements.

Due to the dynamicity of the contents to be displayed, only small portions of the Web pages of
the recommender application can consist of static content and major parts of the page have to be
dynamically constructed and filled with the appropriate content at run time. In fact, personalization
of the dialogb in ADVISOR SUITE applications can be done on various levels [30]. On the content
level we can for instance choose between different ways of how the questions are asked, on which
level of detail results are explained to the user (e.g., depending on his expertise), or what additional
text fragments should be displayed. With respect to navigation, we can decide on the degrees of
freedom that the user should have when using the application, i.e., whether we need to guide the
(novice) user through the dialog or whether we should let the (advanced) user decide by himself
which questions to answer in which order. Finally, personalization could also be done on the
presentation level by, e.g., letting the user customize the appearance of the application for improved
accessibility. In addition, flexibility on the presentation level is also required when an application
should be deployed in the context of different Web shops with individual layout styles.

In ADVISOR SUITE, both the generation of product proposals and the personalization of the
preference elicitation process are based on a fully knowledge-based and model-driven approach.
Consequently, the framework comprises several components that support the user in modeling these
different aspects of a conversational recommender application. Based on these models and

b The techniques for generating personalized product recommendations will be discussed later on.

D. Jannach and G. Kreutler 5

customizable page templates, the system is then capable of automatically generating an executable
Web application. Thus, the whole development cycle from domain modeling, application
development and code generation, over testing, debugging, and maintenance is covered by the
framework.

Figure 2: Typical User Interface of a Conversational Recommender Application.

Figure 3 gives an overview on the architecture of the ADVISOR SUITE framework and shows the
different roles of people in the development cycle: During design time, the domain expert – who is at
least initially accompanied by a knowledge engineer – formalizes the required knowledge with the
help of a set of graphical tools. The different pieces of knowledge include the product- and customer
models, the recommendation rules and utility functions, as well as personalization rules and the
dialog model. All these pieces of knowledge are stored in a central knowledge repository. The
ADVISOR SUITE framework also comprises a set of "default" DHTML templates, which are used to
render the personalized, conversational dialog. These DHTML templates are typically adapted by a
Web developer in order to conform to the layout of the hosting Web site or to accommodate
application-specific extensions. In order to simplify this programming process, the Web developer is
provided with a set of specific high-level programming constructs (see later) such that changes in the
underlying knowledge base are automatically reflected in the user interfaces. From these adapted
templates a GUI Generation Module is creating a working Web application. At run time, end users
interact with this Web-based recommender application and the generic advisor and personalization
engine steers the interaction and personalization process based on the definitions in the knowledge
repository.

From a technical perspective, the whole system is based on standard Web technologies which
means that no specific other development frameworks are required and that ADVISOR SUITE

6 Rapid Development Of Knowledge-based Conversational Recommender Applications

applications can be deployed on various platforms: Java was used both for the development of the
editing tools as well as for the recommendation and personalization engine, the knowledge
repository is built upon a relational database system, and Java Server Pagesc (JSP) serve as base
technology for dynamically constructing the HTML pages. However, in particular with respect to
Web development, the framework is open for the (additional) usage of other user interface
development technologies like JavaScript, Ajax, Cascading Style Sheets, or XML/XSLT
transformations.

In the following sections, we will describe the different components in more detail, give an
overview of the proposed development process for recommender applications within our framework
and will finally report on the experiences we gained from several industrial projects.

Figure 3: Overview of the ADVISOR SUITE Framework (compare [33]).

3 The Recommendation Model

User Model / Questions

The first piece of knowledge we elaborate when developing a conversational recommender
application are the customer characteristics that a sales agent would require in order to make a
recommendation. In ADVISOR SUITE, we distinguish between two types of properties that make up the
user model:

a) Standard characteristics which are acquired through direct questioning the user. For these
questions, we can model the question to be displayed, an optional explanation, plus the

c http://java.sun.com/products/jsp/

D. Jannach and G. Kreutler 7

possible answers a user can give in case there exists such a predefined set of answers. In
addition, at that stage we also define whether multiple answers should be possible or not and
whether an input value is mandatory.

b) Derived or internal characteristics, for which a value is automatically derived from other
characteristics. A typical example from the domain of financial services is the determination
of the risk a customer would accept for his investments [18]. These properties cannot be
directly elicited because a wrong self-assessment by the user would immediately lead to an
inadequate proposal. The business rules for the derivation of these values can for instance be
defined with the help of a basic scoring scheme or with if-then-style business rules. However,
the actual values for such internal variables for an individual user can also be imported from
external system like from a database that stores the past buying preferences of a customer.

In general, a user model in our system thus basically consists of a set of variables, each of them
associated with a defined data type. Our framework supports integer, float numbers, character strings
as well as defined enumerations thereof as basic types. In addition, variables in our system can also be
set-valued, i.e., a variable can simultaneously take several values, which is particularly convenient
when modeling questions for which multiple answers are allowed.

In typical modeling sessions in which a sales expert is directly involved in the knowledge
engineering, we start with an initial set of customer characteristics and incrementally refine and extend
this model within multiple iterations of modeling, automated generation of a prototype application, and
testing. As such, the complexity for the domain expert remains manageable, as he is not required to
know the full set of questions to be asked right from the beginning.

Product Model

Recommender applications built with ADVISOR SUITE are content-based, i.e., the proposals
generated by the system are based on deep knowledge about the characteristics of the items in the
product catalog. Product properties are used to specify the details about the items to be recommended
and this set of variables represents the product model. Similar to customer properties, each of the
product characteristics has a defined type or a domain definition restricting the set of allowed values.
In practice, the acquisition of these characteristics is relatively easy for the domain expert, since in
nearly all domains some sort of product specifications already exist.

Both the user model and the product model are designed with the help of graphical editors. Beside
the definition of variable name and domain, the system supports the definition of further data for each
variable like a multi-lingual question text for each variable in the user model, explanatory texts for
predefined answers, display orders, grouping of variables, extra documentation, and so forth.

The ADVISOR SUITE toolset also comprises a tool for editing the actual product data in a domain,
which can be used in the development and testing phase. In most applications, however, the real
business data is periodically imported and updated via an XML-based interface from an external data
source, like e.g., an electronic product catalog.

8 Rapid Development Of Knowledge-based Conversational Recommender Applications

Recommendation Rules

In ADVISOR SUITE, the set of suitable products for a certain customer is determined with the help
of "if-then”-style filter rules that relate customer characteristics with technical product properties. Note
that internally these recommendation rules are not evaluated by a classical rule-engine but are
evaluated by a specific algorithm which constructs filter queries to the product catalog in the domain
as described in [31]. For the user of the modeling environment, however, the complexity of query
construction is hidden and he only needs to model business rules like "If the customer needs high-
quality printouts of his pictures, then the resolution of the camera must be higher than 5 Megapixels".

Figure 4: ADVISOR SUITE Expression Editor.

Figure 4 shows one of the editors of the ADVISOR SUITE system. In the condition part, the domain
engineer can model an expression over the variables of the user model that describes under which
circumstances, i.e., for which customer profile, the filtering rule in the conclusion shall be applied. The
expression language implemented in the system supports complex nested expressions as well as
common logical and arithmetic operators; the context-aware editor prevents the user from entering
invalid expressions. Note that these ADVISOR SUITE expressions are used throughout in the modeling
environment, i.e., the same types of expressions are also be used to model the conditions for displaying
applying hints or applying personalization rules, as well as for modeling transition conditions in the
dialog model (see below). Note that in that context, our approach is thus to some extent comparable to
the Personalization Rules Modeling Language described in [22], which also bases personalization on
relational expressions over user-specific pieces of information.

This chosen form of "if-then-style" modeling allows us to implement an end-user oriented
recommendation approach, i.e., instead of directly asking the user about required technical product
characteristics, questions about the desired functionality or the preferred use can be asked, which is of
particular importance for end users that are not experts in the domain. Our experiences show that
typical domain experts (which are typically non-IT people) are very soon able to learn how to specify
business rules of that type without the help of a knowledge engineer, in particular when they are
supported by a rule editor that constantly monitors the inputs, displays the currently available operators
or predefined constants, and does not allow them to enter syntactically wrong statements. Furthermore,
in our modeling environment the user can always test and fine-tune the different (combinations of)
filter rules at design time in order to check whether the products proposed by the system correspond to
his expectations.

At run time, when it comes to determine a product proposal for a specific recommendation
session, the advisor engine (see Figure 3) evaluates these expressions given the variable values in the
current customer's user model and constructs a conjunctive query to the catalog. The retrieval

D. Jannach and G. Kreutler 9

algorithms in ADVISOR SUITE also help us to deal with situations, in which none of the products in the
catalog fulfills all the constraints specified by the customer. In these situations the system can be
configured to retrieve a set of products that fulfill as many of the constraints as possible by using a
preference-based relaxation and repair strategy. Technically, the implemented relaxation algorithm
[31] is an optimized version of previous approaches to finding a "Maximum Succeeding Subquery" of
a failing database query [43, 44] and is based on partial query evaluation and compact in-memory data
structures.

Utility Model

After the recommendation process and the previous described filtering step, possibly many suitable
products remain for the customer. In order to rank them according to the user’s requirements, a utility
model can be defined in ADVISOR SUITE by the domain expert. Since we want to take the personal
preferences of a customer into account, the expected utility value for each of the products can not be
computed in advance but has to be determined dynamically based on a MAUT (Multi-Attribute-
Utility-Theory) calculation [62]. In the MAUT-based approach, abstract interest dimensions are the
central element (see Figure 5). In the domain of digital cameras, for instance, aspects of economy or
suitability for mobile use could be dimensions, in which the customer might be interested in. First, we
therefore define user-independent utility functions that describe how the individual product
characteristics contribute to these dimensions. A lower price, for instance, increases the utility value in
the "economy" dimension; smaller cameras are better suited for the mobile use.

EconomyMobile useInterest
dimensions

Individual
product

characteristics

price size power
supply type ...

price range preferred
brand

usage type
...

Current
customer’s

preferences

 utility
values

determine
relative
weights

rel. weight rel. weight

Figure 5: Expected Utilities based on Multi-Attribute Utility Theory (MAUT).

On the other hand, not for every user the importance of these dimensions is the same. When a user has
no particular constraints with respect to the maximum price or to the camera brand, but has indicated
that his main use of the camera will be to take holiday pictures, the relative weight (importance) of the
dimension "mobile use" should be increased when calculating the expected, personalized utility value.
For eliciting these personal interests, we again rely on interactive preference elicitation based on direct
and indirect questioning. A single question can therefore at the same time be used for acquiring
functional or technical requirements (when used in recommendation rules) and for determining the
expected utility weights (when exploited for the MAUT-based calculation).

10 Rapid Development Of Knowledge-based Conversational Recommender Applications

The final ranking of the products to be displayed (which also can be seen as a form of link-
ordering in the sense of [8]) is thus determined by evaluating the personalized utility score [53, 62]

∑=
=

n

i ii xvwxv
1

)()(.

In this formula, n is the number of defined interest dimensions, vi(x) corresponds to the evaluation
of a catalog item for the i-th interest dimension, and wi is the weight that represents the relative
importance of a dimension on the overall evaluation. The relative weights wi for an individual
customer can be automatically derived from the interactively acquired user model with the help of

scoring rules (∑=
=

n

i iw
1

1).

An upper price limit of 200 Euro in a range of actual list prices up to 240 Euro specified by the
customer, for instance, may be mapped by a scoring rule to a relative interest weight of 8 (within a
range from 1 to 10) in the economy dimension. On the other hand, the customer-independent utility
function for the "price"-property of a camera could be defined as a linear mapping of actual list prices
to a normalized "1-to-10" scale. ADVISOR SUITE supports this MAUT-modeling process through a
tabular graphical user interface.

4 Modeling a Personalized Dialog

Up to now, we have focused on modeling the core recommendation knowledge, i.e., how the set
of suitable products and an appropriate ordering of these products for a given set of customer
requirements can be determined. Thus, it would be possible to take the ADVISOR SUITE framework,
define the user and product model, the required rules and implement a few Web pages: One that
contains the needed input fields, checkboxes, or radio buttons for entering the preferences, one that
is used to display the set of suitable products calculated by the system, and optionally an extra page
on which the system's explanations are shown (compare Figure 1).

Such an approach, however, corresponds to a "one-style-fits-all" strategy with respect to the user
interface, which has certain shortcomings. In fact, in particular in technical domains like in the area
of consumer electronics, the end users can be quite heterogeneous in their technical background
knowledge, their interests, or in the way they are able or willing to express their requirements [30].
While a technical expert in the domain of digital cameras might prefer to directly specify technical
requirements and freely change the individual parameters, a novice user might need more
explanations and additional information, more guidance, or a more functionality-oriented style of
questioning. We therefore claim that the key to building successful conversational recommender
applications can be found in the personalization of the dialog. If no personalization is done, end
users can be easily frustrated, as, for instance, novice users might give up when they do not even
understand the questions, while on the other hand experts who exactly know what they are looking
for, might be annoyed with a system that asks too many non-technical questions.

As a long term vision, the ultimate goal of virtual sales advisory would of course be that some
"virtual advisor" is capable of behaving like an experienced human advisor, who will continuously
adapt the communication style based on the utterances and behavior of the customer during the sales
conversation. At the same time he would develop a model of the customer's expertise and his

D. Jannach and G. Kreutler 11

expectations and base the product proposal on this estimate. From the perspective of the user
interaction style, a system that also understands natural language utterances appears to be promising
at a first glance. In the ADVISOR SUITE system, however, we decided to follow a form-based, system-
driven approach and did not rely on natural language interaction for different reasons. First, in a
natural language system, we do not only have to develop knowledge bases for the recommendation
domain but also have to build a large repository of phrases needed for casual conversation which one
typically expects from such a system to be capable ofd. More importantly, we claim that in particular
users with little background knowledge in the domain may have their problems in keeping the
conversation running, as they might not even know which questions to ask or which terms to use. In
addition, we argue that online users are well-acquainted with fill-out forms and navigation features
in standard Web pages and will thus feel more comfortable and being in control when using the
system. Finally, when using natural language systems, there is some risk that end users attribute
more intelligence to the system than is warranted and disappointedly quit using the system that for
instance does not understand certain utterances.

Still, many different aspects of the behavior of a human sales agent can also be implemented
with the help of a standard Web interface and personalization can be done on different levels [30,
37].

Personalization on the Content Level:

• Questions and Answers:
The preference elicitation process in ADVISOR SUITE is based on a conversational dialog in
which the user is asked a series of questions. In ADVISOR SUITE applications, questions
correspond to a subset of the variables of the user model. The possible answers to a question are
determined by the data type of the variable. In typical applications, most of the questions
correspond to variables with predefined, enumerated domains which are annotated with
explanatory texts and so forth as described above. In general, the personalization opportunities
in the context of questions and answers comprise, e.g., the selection of a language or a jargon
that the current user might be comfortable with, the set of currently available answer options,
the selection of situation-dependent defaults, or the amount of optional detailed information
[29]. Within the ADVISOR SUITE system, one can thus define personalized variants of text
fragments that are used in the question and answers. The selection of the actual variant to be
chosen for a certain customer is again determined by an ADVISOR SUITE expression.

• The Advisory Dialog:
The dialog model describes the possible flow of the conversation, i.e., which questions shall be
asked to the user under which circumstances. In a typical example application, the system might
at the beginning of the conversation ask the customer for a self-estimate of his expertise in the
domain. Depending on the customer's answer, the system will e.g., provide extra information for
beginners, ask non-technical questions for customers with an intermediate knowledge level, or
directly step into technical details with an expert user.
This dialog model in ADVISOR SUITE is defined by the domain expert based on a graphical,

d Such knowledge bases, however, could be shared across several application domains.

12 Rapid Development Of Knowledge-based Conversational Recommender Applications

flowgraph-like representation and with the help of a dedicated modelling environment (see
Figure 6). Note that non-IT people have to use the modelling environment, which means that
different aspects in the design of its user interface and the used conceptualizations have to be
taken into account. Thus, our goal was to develop a graphical representation that has a close
correspondence to the final Web application that the end user perceives. So, for instance,
although the model could be as well described with the help of a state transition diagram, our
experiences show that the domain experts who are non-programmers more easily comprehend
concepts like "dialog pages and questions" instead of "states and variables". Internally, however,
the model is subsequently transformed into a predicate-augmented finite-state automation,
which is evaluated by the run-time component in order to determine the next dialog page.

Dialog page
(Questions, input control, ...)

Conditions for dialog
continuation

Context-aware
expression editor,

definitions from user modelQuestions/characteristics
from user model

Dialog phases

Figure 6: Modeling the Dialog Flow with PROCESS DESIGNER.

As a result of this explicit form of modelling the dialog flow, in our approach the number of
possible dialog paths in most applications remains rather small. If we would think of an
alternative approach, in which we only model the preconditions of each page (i.e., do not rely on
a procedural flow) and let some reasoning system like a rule engine dynamically decide on how
to proceed, we would of course reach more flexibility. However, we claim that a typical domain
expert will soon lose track of the problem, in particular as non-IT people rather think in
procedural patterns. Furthermore, also the process of testing of a non-procedural dialog model
will be harder due to the indeterminism that may be introduced with a declarative approach.
 In order to support the domain expert in the development process, the PROCESS DESIGNER

D. Jannach and G. Kreutler 13

toolkit also comprises different consistency-ensuring techniques such as the one described in
[20], with which we can automatically detect unreachable nodes or ambiguous transition
conditions in the graph based on model-based diagnosis techniques.

With respect to tooling, we have decided to separate the modelling environment into two
different views in order to reduce the complexity for the user. In the ADVISOR DESIGNER view,
the core recommendation knowledge, like questions and answers, filter rules, or utility
definitions are defined. In the PROCESS DESIGNER view, the focus lies on the dialog model only.
However, both two tools operate upon the same knowledge base which means that for instance
in the definition of the transition conditions in the dialog flow, the definitions of the user model
can be directly accessed.
At the end of the modelling phase, corresponding DHTML pages are generated from these
definitions (see next section). At run time, the personalization agent of the system keeps track of
the state of the current conversation and guides the customer accordingly through the dialog by
evaluating the transition conditions defined in the dialog model.

• Personalized Opportunistic Hints:
One way of making a Web-based conversion more vivid and livelier, is to present additional,
situation-dependent information to the user during the dialog. One typical example is related to
"conflicts" in the user's requirements, which can for instance be detected with the help of
control questions. These questions are a standard means to verify that a user's answers are
plausible and consistent, and thus to increase the quality of the customer profile which is in our
approach mainly based on self-assessment. In ADVISOR SUITE, the domain expert can therefore
declaratively model those constellations, in which the user should be notified when his
statements are conflicting or even contradictory. In our system, a conflict consists of a
specification of the problematic situation and an explanatory text to be displayed to the user.
The specification of the conflict situation can be either expressed with an ADVISOR SUITE
expression over the customer characteristics (like "age_of_customer > 70yrs AND
duration_of_investment > 10yrs") or with an explicit, tabular description of compatible and
incompatible values. Another application area for hints (as opposed to conflicts) is the
presentation of personalized, promotional information. This type of hints is usually used to
achieve up-selling or cross-selling goals. In general, we claim that all types of opportunistic
hints may help us to improve the customer's trust in the system's intelligence, since the user
experiences that the system constantly monitors his behavior and immediately gives appropriate
feedback.

• Parameterizable and Personalized Text Fragments:
Personalization on the content level in ADVISOR SUITE can also be done on the basis of
personalized text fragments which can be used throughout the application. Basically, the domain
expert can define different variants of text fragments which are e.g., to be used on explanation
pages or in the result-presentation phase. Therefore, one could for instance model different
variants of an explanatory text for the same fact. Depending on the current user's background,
the explanation would then be either non-technical or technical or containing more or less detail,
respectively. From a technical view, for each text variant ADVISOR SUITE enables the domain
expert to model a condition on the current customer's characteristics which is subsequently

14 Rapid Development Of Knowledge-based Conversational Recommender Applications

evaluated at run time to decide which variant to present to the user; the syntax and tooling for
writing these conditions is the same as the used throughout in the application.
Figure 7 shows how general text variants can be modeled in our system. Depending on the
current user characteristics – which is again defined though an ADVISOR SUITE expression – the
same piece of information can be displayed in different forms. Note that the variation can be
both on the content level, i.e., what information should be displayed, but also on the
presentation level, i.e., how the information is displayed. As such, also different forms of
general hypermedia adaptation techniques like described in [8] (stretch-text, link-hiding, or
conditional fragments) can be implemented, as the usage of arbitrary HTML-code and empty
texts in these fragments is also allowed.
A text variant definition in our system thus consists of pairs of ADVISOR SUITE expressions over
the variables of the user model and a corresponding variant (Figure 7). At run time, the
personalization agent evaluates these expressions and selects the appropriate, personalized
variant for display.

Figure 7: Modeling Conditional Text Fragments.

Personalization on the Interaction and Presentation Level:

• Degrees of Freedom in Navigation:
With respect to the navigation possibilities for the end user, ADVISOR SUITE allows us to
define different alternatives and to take the background of the user into account. While it
might be more appropriate for novice users to limit their navigation options to a minimum
in order to focus their attention on the current questions, an expert user might be interested
in a more flexible system in which he is able to move forward and back in the application,
answer the questions in an arbitrary order, or view results immediately after having
specified some technical characteristics.
Technically, the degree of freedom in navigation can be implemented in our system by
using conditional text fragments as described above. Depending on the customer profile, for
instance the HTML code for rendering a navigation button or link can be displayed or not.

• Presentation:
Also the style of presentation can be varied in ADVISOR SUITE applications. Depending on
the age or background of the user, we could for instance have a more youth-oriented or a
businesslike style; on the other hand, we could for example choose a small, wizard-like
appearance of the application or embed it in a larger information portal.
Again, such an adaptation can be steered by conditional text fragments, for instance by
including one or the other style sheet definition depending on the customer's profile.

D. Jannach and G. Kreutler 15

Figure 8 below summarizes our description of personalization possibilities in the conversational
dialog. The screenshot from a typical run-time dialog page comprises the following features: a user-
specific question, a personalized set of predefined answers with a defined default value and
accompanying explanations, navigation buttons, whose visibility can be defined via conditional text
fragments as well as further user-specific features like "meta-explanations" that appear on the page
depending on the current user's profile.

Figure 8: Personalized Dialog Page [30].

5 Generating the Web Application from the Model

In the previous sections we have described how to model two different pieces of information,
i.e., the core recommendation knowledge and the knowledge required for personalizing the
preference elicitation process. In the following section, we will describe the mechanisms in ADVISOR
SUITE that allow us to develop easy-to-maintain page templates with the help of which we can
automatically generate the dynamic Web pages for displaying the dialog.

There are two basic requirements that have to be addressed when developing the Web pages for
the conversational recommender system:

• The pages have to be highly dynamic such that changes in the underlying recommendation
and personalization knowledge bases - like the introduction of an extra option for a question
or a change in the personalization rules - do not require any adaptation in the presentation
layer, i.e., the HTML pages.

• Although the content of the pages has to be dynamically constructed, it has to be possible that
a Web developer can easily adapt and extend the pages if needed. This requirement is of
particular importance, because sales assistance applications typically do not stand alone but
are rather integrated into an existing Web shop or a portal. Changing the layout according to
the corporate design, embedding it into the existing site's infrastructure and so forth are
typical tasks that have to be accomplished in the development process.

16 Rapid Development Of Knowledge-based Conversational Recommender Applications

The approach taken in the ADVISOR SUITE system is based on two pillars. First, we rely on a
typical Model-View-Controller [40] architecture and design pattern for separating the different layers
of the application. In our case, the model contains the definitions of the knowledge base and the
Personalization Agent of our system corresponds to a generic controller component that manages the
dialog with the user and maps end-user actions to application responses. Finally, the view consists of
the Web pages that are used for rendering the personalized content.

The second pillar we rely on in ADVISOR SUITE is the automatic assembly of dynamic Web pages
(the view part) from page fragments according to the declarative descriptions in the knowledge
repository. In our experience, this automatic generation of Web pages is of particular importance when
developing Web applications like conversational recommender systems in which rapid prototyping and
early user-involvement are typically central elements.

If we again look at a typical dialog page (Figure 9), we can see that a page in our system can be
split up into several areas like headers, navigation areas, question and answer areas and so forth. The
layout and content of each area is defined in a separate, small template that can be individually
adapted. In the header area, for instance, one will typically define the style sheet, company logo, and
include other required modules.

Custom
footer
area

Menu
area

Animated
avatar

Answer display

Question display

Cascading style sheets
(Layout and positioning)

Navigation area

Figure 9: Assembling a Page from Fragments [33].

The surrounding areas of the page like navigation or menus typically remain rather stable during
the whole dialog; the central part, i.e., the questions, possible answers, or hints of course are different
for each page and depend on the user's inputs. However, we have already modeled in a previous step,
what the contents of each page should be (see Figure 6). Thus, we only have to define, how the content
should be presented.

In ADVISOR SUITE, this layout information is contained in so-called "templates". In the example
dialog page shown above in Figure 9, for instance, the different answer possibilities for one specific
question on the page are rendered as vertically aligned radio boxes. Thus, we have to define a

D. Jannach and G. Kreutler 17

corresponding template in our framework for rendering single selection inputs with radio buttons; the
complete code contained in such a template is listed in Figure 10.

Figure 10: Template for Radio Buttons.

In these templates, we rely on the usage of Custom Tags [25] (printed in bold in Figure 10), which
allow us to make all the technical details transparent for the Web developer, who can thus focus on,
e.g., formatting the HTML table for aligning the radio buttons in the layout phase. The functionality of
the Custom Tags used in the example is as follows. The <advise:question> declaration at the
beginning sets the scope for the subsequent instructions, the placeholder $QUESTION_NAME$ will be
automatically set by system when the page is assembled. With <advise:questiontext>, the question
text defined in the knowledge base will be printed on the page. Please note that the system will already
take the proper personalized text variant in the correct language from the repository. With
<advise:answers>, a loop over the possible answers is constructed and within this loop, a radio
control and the defined answer option are displayed. Thus, the Web developer has not to be aware of
the possible answer options of a question, what the personalization rules are, what default should be set
and so forth, since everything is dynamically determined in the business logic layer (by the
personalization agent). Therefore, changes in the knowledge base will not cause any maintenance
efforts in the presentation layer.

The ADVISOR SUITE framework contains predefined templates for all of the components that are
required for building a "standard" recommender application, i.e., the templates for different question
styles, result presentation, explanation pages, conflict display and so forth (see also [30]) plus a default
layout style sheet. This in turn means that one can immediately generate a first version of the
application by only using the graphical modeling environment. However, the usage of these standard
templates is not mandatory, i.e., the Web developer can always decide to develop his own Java Server
Pages (being the standard technology in ADVISOR SUITE) from scratch and use the tag library or the
Application Programming Interface of ADVISOR SUITE for retrieving data from the knowledge
repository.

Overall, we claim that highly interactive, conversational recommender applications only remain
maintainable if the development is based on a shared knowledge base that contains the different pieces
of knowledge such that redundancies in the models can be avoided (see also [3]). In ADVISOR SUITE,
the question (plus any further information like whether only one value or multiple values can be
entered) is part of the recommendation knowledge. The specific moment in the dialog and the
conditions when the question should be asked to the user is determined by evaluating the dialog model.

18 Rapid Development Of Knowledge-based Conversational Recommender Applications

Finally, the presentation style has to be defined in a form in which all technical details of dynamically
evaluating the knowledge base definitions are hidden from the Web developer.

In applications whose Web pages or source code is automatically constructed, we always face the
problem of repeated generation when there have been manual changes in the generated artifacts. As in
other approaches to automated code generation, also in the ADVISOR SUITE framework we partially
avoid these problems by postulating that changes and additions may only be made in the templates and
not in the generated pages. However, note that instead of having only one large, complex Web page for
rendering the whole dialog, our system creates a separate JSP file for each page defined in the dialog
model. The main advantage of this approach lies in the fact that if there is a need for a very specific,
non-standard logic on one single page, these additions can be made on exactly this page, i.e., it is not
necessary to implement these additions as a separate branch of execution in some generic template.
These manually engineered pages can be then marked as such in the modeling environment, which
means that in the next phase of application generation this extra logic in the page will not be
overwritten.

Figure 11: Integration into Standard Web Development Environment.

With respect to the technologies used, finally, we experienced in several industrial projects that it
is extremely important for companies that "standard" Web development languages and environments
can be used. First, it is important that the recommender application can be easily integrated and
deployed on the existing Web site. Second, when add-on programming is required, using a

D. Jannach and G. Kreutler 19

programming language like Java has the advantage that powerful Integrated Development
Environments (IDE) for application development, debugging, versioning and so forth can be
employed. Figure 11 shows how a wide-spread IDE like Eclipsee can be used for editing the page
templates. Since Advisor Suite page templates are ordinary JSP files, all common features of modern
editors like syntax highlighting, refactoring, or code-completion (also for Custom Tags) are available.
In general, however, Web developers can use their favorite HTML-editors or Integrated Development
Environments and do not need to learn new tools when they adapt ADVISOR SUITE pages or templates.

6 Development Process

Having described the technical aspects of our framework, we will subsequently summarize key
learnings of how to efficiently develop high-quality recommender applications and describe main
aspects of the ADVISOR SUITE "reference" process model that emerged from our experiences from
different industrial projects. Up to now, more than thirty industrial recommender applications in
different domains have been built with our system, among them a digital camera advisor on Austria's
largest e-Commerce sitef which has been up to now used by more than 200.000 end users or a financial
advisor tool which is used by more than 1000 sales agents of an Austrian insurance company [18].
Note that in this paper we will focus on general development process and principles and not on the
specific results which were achieved in particular domains and which are for instance documented in
[15, 17, 35], or [63].

As the presented ADVISOR SUITE system is a knowledge-based development system, quite
naturally, aspects of modeling, knowledge-engineering, prototyping, customizing and Web Engineering
are dominant in our problem domain and thus require an increased involvement of the different
stakeholders. The main goals of the subsequently described approach are thus the reduction of
development time/costs and an increase of quality by relying on "best practice" knowledge gained
from previous projects.

The main aspects of our proposed development process which is strongly based on evolutionary
prototyping are depicted in Figure 12. We use a UML activity diagram notation to illustrate the basic
structure of the process and use swimlanes [48] to organize the different responsibilities of the
different process rolesg.

After a project has been accepted, an inception workshop shall take place, in which all different
stakeholders shall participate for establishing a common understanding of the planned outcomes of the
project. Typical stakeholders are, e.g., management, sales & marketing, specialist departments,
tentative other project members, internal and outsourced IT staff, as well as potential end-users. In this
early phase, we focus on the end-user’s view and aim at collaboratively sketching an initial customer
and product model as well as a first idea of the advisory dialog. Depending on the situation, the initial
model is either documented on the blackboard or it is recorded by directly entering it into our system
extending a "standard application" which is part of the framework.

e http://www.eclipse.org
f Measured with respect to unique clients per day.
g For sake of readability we omit details on work products and so forth.

20 Rapid Development Of Knowledge-based Conversational Recommender Applications

Domain
expert

Knowledge
engineer

Programmer

Web
Developer

Develop product
model

Develop user
model, Q & A Develop dialog

Develop
recommendation
rules

Develop ranking
model

Add
multilinguality

Develop interface
to catalog

Implement
templates & style
sheets

Do add-on
programming

Domain modeling tasks Release

Release
(internal)
version

Fine tuning
and
acceptance
testing

Key user

Transport
to
production

Monitor
and
collect
feedback

Production

Do
inception
workshop

Testing

Development tasks

Inception

Figure 12: Overview on the Development Process.

Although typically major parts of the model developed in the initial workshop will be significantly
revised during the actual development phase, building a throw-away prototype (initial sketch in an e-
Prototyping approach as described in [4]) has different advantages. First, the envisioned project
outcomes become more tangible for non-IT people, in particular as we can immediately generate and
test functional Web applications during development. On the other hand, incorporating the different
ideas coming up in the discussion (e.g., what questions to be asked) outright into a working
application, typically helps us to increase the workshop participants’ motivation to actively contribute
to the discussion, as they can see how their thoughts are immediately taken into account and reflected
in the application.

After the initial workshop in which also roles and responsibilities for the next phases should be
defined, the system construction process can be parallelized into two threads, "domain modeling" and
"application development". Both of them start with a training phase in which domain experts learn
how to formalize the different pieces of domain knowledge and how to use the software environment;
technical engineers are briefed about low-level details of the system, in particular how to integrate the
system within the company’s IT infrastructure, how to adapt and extend the user interface, or how to
incorporate a special program logic by using pre-defined hooks or by sub-classing parts of the object-
oriented framework.

The system construction process is typically executed in several iterations of parallelized
modeling/programming activities and testing activities which are carried out by different people.

The domain modeling tasks to be carried out by the domain expert and knowledge engineer
include the definition of the product model, the user model including the corresponding dialog
questions, the dialog model, as well as recommendation and ranking rules. Finally, also the definition
of multilingual versions of all text fragments is part of the modeling phase. With respect to the
modeling phase, we have to note that – although this of course strongly depends on the background
and expertise of the domain expert – the assistance of a knowledge engineer was nearly always
required or helpful in our projects, at least during the first iterations. After these initial iterations
however, in several projects the domain experts were capable of further developing and fine-tuning the

D. Jannach and G. Kreutler 21

application by themselves and the help of a knowledge engineer was only required in exceptional
cases. Thus, these experiences also suggest that the user-oriented conceptual models for expressing the
required domain knowledge implemented in our system are also comprehensible for domain experts
with a limited background in information technology or programming. An important experience we
have made in that context is that many domain experts develop the recommendation model in a trial-
and-error process, i.e., they for instance formulate some product filtering rule and then immediately
want to test whether the rule leads to the expected results. Therefore, we implemented several features
in our modeling environment for supporting this particular form of development. The domain engineer
can for instance always re-generate the Web application and test the changes from the perspective of
the end user. In addition, individual parts of the modeled knowledge can be tested individually for
correctness or at least consistency. The effects of applying specific (combinations of) filtering rules
can be immediately checked with the help of compact test screens that are included in the modeling
environment; in the test environment of the framework [19] suitable test cases can be identified based
on equivalence partitioning. Finally, new algorithms based on model-based diagnosis techniques for
analyzing the dialog graph and for automatically detecting inconsistencies like non-reachable dialog
paths have been proposed in [16] and implemented in the system.

The application development tasks carried out by programmers and Web developers typically
comprise the implementation of a software module for importing existing product data from external
data sources like an electronic catalog, the implementation and adaptation of templates and style sheets
as described above, as well as any other add-on programming of functionality not covered by the
standard framework.

The parallel threads of system construction are joined at the end of each iteration when a new
(internal) version of the recommender application is to be released for a subsequent acceptance testing
and fine-tuning activity. Depending on the situation, these release tests can be carried out in-house by
domain experts or with the help of a pilot system which is evaluated by a selected group of potential
end users. As in standard software development processes, the collected feedback and test results serve
as a starting point for the next iteration.

Our reference process model stipulates that the incremental development of the application is to be
done on a dedicated development and test system. In many cases, domain experts even like to run
copies of the complete, light-weight modeling environment and the current application on their local
desktop PCs and do their own experiments and tests before doing changes in the development
installation. These local, private installations are typically helpful for those domain experts that have a
limited background in IT and are initially afraid of doing something wrong or "damaging" the
application. Thus, in the transport activity shown in Figure 12, changes in the development and test
system are propagated to the production installation, which is supported in ADVISOR SUITE through an
own "transport" layer. With the help of this software infrastructure, both the files of the application
(generated Java Server Pages or templates) as well as the contents of the knowledge repository can be
transferred over the Web to a remote system. The transport layer itself both supports "push" and "pull"
operations. While pushing corresponds to the aforementioned deployment scenario, active pulling is
required in scenarios in which the recommender application is used as a sales support tool and runs on
the laptop of the sales agent. In that scenario, one can retrieve knowledge-base updates from a central
server over the transport layer and roll-out costs can thus be minimized.

22 Rapid Development Of Knowledge-based Conversational Recommender Applications

After a new version of the recommender application has been put into production, it is a common
goal to constantly monitor the system and collect feedback and statistics for further improvements. The
ADVISOR SUITE framework supports these tasks as follows. On the one hand, the framework comprises
a Web-based management console for monitoring the current system status which can for instance be
used for displaying the number of current user sessions, overall usage statistics, all technical settings
like open database connections, as well as listings of error messages. On the other hand, the framework
automatically creates detailed logs of all recommendation sessions with end users and stores them in
the system's database. These logs can be subsequently used for improving the recommender
application in a next iteration of development. Based on the stored interaction logs, one can for
instance try to analyze whether there are typical situations in which end users prematurely quit the
advisory dialog. At the moment, the ADVISOR SUITE framework comprises a basic module for
generating a set of standard interaction statistics from the full logs. In our current and future work,
however, we aim at developing an advanced component that is for instance capable of automatically
detecting problematic dialog situations and so forth and provide corresponding hints for the domain
engineer.

7 Comparison and Related Work

Building Conversational Recommender Systems

Applications built with ADVISOR SUITE fall into the category of conversational recommender
systems [6, 10, 50, 54, 60], but differ from other approaches by a user interface which allows us to
elicit user preferences in a personalized dialog. Although high interactivity, personalization, and
increased user involvement (compared, e.g., with classical collaborative filtering approaches like on
Amazon.com) begin to play a more important role in recommender systems research, to the best of
our knowledge, not much work on engineering aspects with respect to the Web-based user interface
can be found in literature. Most of the previous work in the area of conversational systems focuses
on specific aspects of the problem, like user query management, similarity measures [51], or
multimedia user interfaces [29]; thus, in many cases, the user interfaces are either developed in an
ad-hoc style, which can be found in many Web-based systems [36], or specifically engineered like
the multimedia-enhanced product descriptions discussed in [51].

With respect to modeling and managing man-machine dialogs, a broad array of literature can be
found in the area of Natural Language Processing (NLP). In [11], for instance, the Web-based sales
assistance system NLSA is described that combines natural language processing with traditional AI
rule-based technology and taxonomy mapping in order to assist the user in finding relevant
information about products and services on an e-commerce site. Comparable to our work, NLSA relies
on explicit domain knowledge for relating customer requirements to product characteristics and
partially also on explicit requirements elicitation with the help of predefined questions. In addition, the
NLSA system also uses a domain-ontology in the background and allows the user to enter free text
which is then parsed for defined keywords for determining the interests of the end user and narrowing
the range of possible problems. With respect to personalization features, however, in the NLSA system
basically only the content (dialog and recommendations) can be personalized. The presented ADVISOR
SUITE system goes beyond that and – based on its general, rule-based personalization mechanism –
also supports other typical types of personalization (e.g., with respect to links, structure, or the

D. Jannach and G. Kreutler 23

presentation style), comprehensive tool support, and the automated generation of dynamic and
maintainable Web pages. Still, we view the incorporation and exploitation of free-text search phrases,
which – according to the study described in [11] – are well-appreciated by end users as a promising
additional feature in sales assistance systems and thus aim at integrating these capabilities into our
system as a part of our future work.

Although the ultimate vision of virtual sales advisory could be seen in a system that interacts with
the end user in natural language like an experienced sales agent would do, we are currently skeptical
about using only natural language interfaces in Web-based recommender systems as already
mentioned above. It is not only the massive amount of deep domain knowledge that is required in the
background for carrying on the dialog, these systems also need sophisticated techniques for managing
a mixed-initiative dialog (like proposed in [6, 7], or [60]). Finally, today’s Web users are well
acquainted with the common form-based interaction and interrogation style, whereas on the other hand
systems that provide more "natural" forms of interaction often suffer the problem that end users
attribute to the system more intelligence than is warranted.

Model-driven Development and Web Engineering, Domain-oriented Software Development

Applying and extending the Model Driven Software Development (MDSD) approach [55] to
Web-based applications and accommodating the particularities of these special types of systems are
main approaches in the Web Engineering field, which in general is concerned with the investigation of
principles, methods, and techniques for cost-effective development of high-quality, Web-based
systems. With respect to MDSD, this relatively young field has brought up different specific
development processes, extended modeling methods, design principles, as well as novel tools for
transferring or applying best practices from general Software Engineering to the development of Web-
based systems or applications. With regard to modeling and design, many approaches like OO-H [24],
OO-HDM [57], WebML [12], UWE [38], SHDM [42], or also Netsilon [46] and HyperDE [47] aim at
extending existing modeling approaches like UML- or E/R-diagrams with specific concepts needed in
the design of Web applications, typical extensions being navigation models or interface-design and
presentation models.

Correspondences between the overall goals of these approaches with our work can be seen in the
following dimensions: The model-driven software development approach, the separation of the
different layers of the application, support for adaptivity and personalization, as well as (semi-)
automatic generation of dynamic Web pages.

Comparable to the above-mentioned modeling approaches to Web application development, the
presented ADVISOR SUITE framework supports system design on the basis of different – in our case
domain-specific – models as described in earlier sections, each one used for capturing a specific aspect
of the overall knowledge and functionality of the target application. This separation of the models (like
the product model, customer model, or dialog model) as well as the provision of user-oriented
conceptualizations and corresponding, graphical tools helps us to significantly reduce the complexity
for the domain expert and the knowledge engineer, which is one of the key prerequisites for the
success of the system. Our work differs from the above-mentioned approaches insofar, as we do not
aim at providing a comprehensive methodology for developing Web applications in general, but rather
limit ourselves to conceptual modelling and development support for a specific family of applications,

24 Rapid Development Of Knowledge-based Conversational Recommender Applications

i.e., Web-based sales assistance systems. We for instance deliberately decided not to use the
widespread UML notation, because one of the main goals in the design of the ADVISOR SUITE system
was to make it usable by the domain expert who in general may not have enough expertise in
conceptual modelling techniques. Thus, it is important to provide user-oriented, domain-specific
conceptualizationsh. As already argued in Section 4, we could have used for instance a UML state
diagram to model the dialog (see Figure 6), but we decided to use a non-standard visualization and
terminology. In our experience this makes things easier for the domain expert as he has not to get
acquainted to technically-oriented and rather generic domain-independent terms that have to be used in
a general-purpose language like UML. Thus, our work to some extent also follows a Domain-oriented
Software Development (see e.g., [27]) strategy, in which the main idea is to exploit domain-specific
modelling concepts for improving the system development process both with respect the time needed
for model acquisition as well as to the quality of the domain models.

From the viewpoint of general application design, the Model-View-Controller design pattern (see,
e.g., [40]) is one of today’s successful best practices for building in particular Web-based applications,
as this system architecture allows us to achieve high flexibility and to separate an application’s
business logic from presentation aspects. The "standard application", which is automatically generated
in ADVISOR SUITE, strictly observes the MVC design pattern. With respect to the model-part, however,
we have to note that in contrast to general applications the structure of the domain model itself as well
as algorithms that implement parts of the business logic are already pre-implemented in our system.
Thus, the domain expert does not have to model the structure of recommendation problems
themselves, but rather specific problem instances. The view-part of the application is realized in the
form of the generated Java Server Pages that use the Custom Tags described above for transparently
accessing the objects in the model. However, when a different view is required, when, e.g., the
application should be displayed on a mobile device, the strict separation of layers allows us to easily
exchange the standard view with an alternative implementation, e.g., based on XML output and XSLT
transformations. The controller part is realized in the form of the "Personalization Agent" [33] that
handles all the user interactions within a user session, evaluates the personalization rules based on the
definitions in the knowledge base and appropriately forwards the user to the correct successor pages.

How to model adaptivity and personalization in context aware Web applications is another current
issue in Web Engineering research [3, 12, 13, 14, 21, 58]. Baumeister et al., for instance, in [3] present
an aspect-oriented extension of the UWE approach for modeling common types of adaptive
navigation. Similarly, Schwabe et al. in [28, 52] and [58] argue that personalization issues should be
addressed on the level of design and not on the implementation level. In the object-oriented OOHDM
approach, they also describe some typical scenarios and patterns of personalization in Web
applications that can be implemented on the basis of user profiles or preferences. In [23], Garrigós et
al. discuss the personalization architecture of the OO-H method which is also based on the existence of
a user model but additionally relies on adaptivity rules and a rules engine for supporting the dynamic
composition of personalized pages from XML-based specifications. A proposal for designing context-
aware, adaptive user interfaces on the conceptual level in WebML is discussed in [13], a non-graphical
adaptation model for the Hera framework is proposed in [21] and [61].

h See also [9] for an overview of insights from Human-Computer Interaction research.

D. Jannach and G. Kreutler 25

Overall, in most of these approaches to developing personalized and adaptive applications, a
similar set of adaptation patterns is addressed and a comparable set of concepts is required to capture
the personalization knowledge: user roles or profiles are used to describe the context and some sort of
rules serve as a means to define the adaptation business logic. Most mentioned approaches also rely on
a graphical notation, and finally, certain aspects of the design of dynamic page generation have to be
addressed. Thus, quite naturally, most of these aspects like the "user/customer model" can also be
found in the presented ADVISOR SUITE framework, the most prominent aspects being personalization
on the navigational level (in particular the advisory dialog) and the content level, i.e., the questions and
possible answers, or the products to be recommended themselves. Due to the particularities of the
domain, however, these central aspects are treated in our system in a domain-specific approach, i.e.,
the flow of pages is modeled based on the graphical dialog model, the personalized set of products for
a given customer profile determined are based on the described knowledge- and utility-based method.
Still, most other types of personalization knowledge (e.g., for the selection of appropriate text
fragments) can be expressed in our system in the form of textual "if-then-style" personalization rules,
which are dynamically evaluated at run-time by a knowledge-based rule engine like in [2]. These rules
can be specified on the individual screens of the modeling environment and in the page templates,
respectively. In contrast to the above-mentioned approaches, however, we do not rely on a graphical
form for modeling business rules but rather opted for an intuitive textual representation. From several
industrial projects and the heterogeneous set of domain experts that have used the system up to now,
we learned that also non-programmers quickly learn to use this form of specifying personalization
expressions, in particular if a context-sensitive editing environment and the opportunity for immediate
tests are provided. For the same reasons, no representation mechanism based on UML’s Object
Constraint Language was chosen, because we cannot expect domain experts to understand the
principles of object orientation.

One aspect of adaptivity which is not yet supported in ADVISOR SUITE on a graphical or
conceptual level is the personalization and customization of the user interface on the structure level
[58]. Currently, the basic structure of the dialog pages, i.e., where the different page fragments appear,
has to be defined on the level of the page templates and thus requires manual engineering of HTML
pages. Still, if structurally different versions of the user interface are required, one could achieve this
by defining different page templates and adapt the dialog logic accordingly, which, however, could
cause problems with respect to maintenance. Thus, we are currently investigating how already existing
approaches from the above-mentioned, general-purpose Web application development methods could
be adapted for our purposes.

Overall, we see our work as an example of how we can benefit from the methods, concepts, and
best practices developed in the field of Web Engineering also in the context of the specific application
domain of interactive, Web-based recommender systems. These best practices for instance include
consistent model-driven development, clear separation of the different application layers, and the
exploitation of common personalization and adaptation techniques, which help us to significantly
reduce development time and maintenance costs while at the same time quality can be kept at a high
leveli.

i Details of an assessment of a deployed application in the financial services domain are described,
e.g., in [18].

26 Rapid Development Of Knowledge-based Conversational Recommender Applications

8 Conclusions

In this paper we have described a framework for the rapid development of maintainable, Web-
based conversational recommender systems. The presented ADVISOR SUITE system follows a model-
driven and knowledge-based approach, both with respect to the core recommendation task as well as
for the design of a Web interface that supports complex and personalized user interaction. The usage
of user-oriented conceptual models, adequate graphical editing tools, and the possibility to generate
MVC-based applications allows us to ease the development of such complex, highly interactive
applications and ensure a high quality of the resulting application.

Our current work on the one hand aims at further exploiting and transferring recent insights and
new approaches developed in the Web Engineering research field into the context of our application
domain. On the other hand, we currently also investigate how individual domain-specific approaches
developed in our system can be generalized such that they can also be used in the context of building
Web applications in arbitrary domains.

References

1. Adomavicius, G., Tuzhilin, A., Toward the next generation of recommender systems: a survey
of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data
Engineering, 17, 6 (2005), 734-749.

2. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R., and
Zanker, M., A Framework for the Development of Personalized, Distributed Web-Based
Configuration Systems, AI Magazine, 24 (3), Fall 2003, 93-110.

3. Baumeister, H., Knapp, A., Koch, N., and Zhang, G., Modeling Adaptivity with Aspects. In:
Lowe, D., Gaedke, M. (Eds.): Web Engineering, 5th International Conference, Sydney, Springer
LNCS 3579, 2005, 406-416.

4. Bleek, W., Jeenicke, M., and Klischewski, R., Developing Web-based applications through e-
Prototyping, Proceedings of 26th International Computer Software and Applications Conference
(COMPSAC’02), 2002, 609-614.

5. Burke, R., Knowledge-based recommender systems. Encyclopedia of Library & Information
Systems, 69, 32 (2000).

6. Branting, K., Lester, J., and Mott, B., Dialogue management for conversational case-based
reasoning. In Proceedings of the Seventh European Conference on Case-Based Reasoning,
2004, 77-90.

7. Bridge, D., Towards Conversational Recommender Systems: A Dialogue Grammar Approach,
Proceedings of the Workshop in Mixed-Initiative Case-Based Reasoning, Workshop
Programme at the Sixth European Conference in Case-Based Reasoning, 2002, 9-22.

8. Brusilovsky, P., Methods and Techniques of Adaptive Hypermedia, User Modeling and User-
Adapted Interaction, Vol. 6(2/3), 87-129, 1996.

D. Jannach and G. Kreutler 27

9. Burnett, M., HCI research regarding end-user requirement specification: a tutorial. Knowledge-
Based Systems, 16 (2003), 341-349.

10. Carenini, G., Smith, J., and Poole, D., Towards more Conversational and Collaborative
Recommender Systems, Proceedings of the 8th international conference on Intelligent user
Interfaces, Miami, Florida, 2003, 12-18.

11. Chai, J.Y., Budzikowska, M., Horvath, V., Nicolov, N., Kambhatla, N., and Zadrozny,W.,
Natural Language Sales Assistant - A Web-Based Dialog System for Online Sales, Proceedings
IAAI'01, AAAI Press, 2001, 19-26.

12. Ceri, S., Fraternali, P., and Matera, M., Conceptual Modeling of Data-Intensive Web
Applications, IEEE Internet Computing, Vol. 6, No. 4 (July-August 2002), 20-30.

13. Ceri, S., Daniel, F., Matera, M., and Facca, F., Model-driven Development of Context-Aware
Web Applications. To appear on ACM Transactions on Internet Technology (ACM TOIT),
Volume 7(2), May 2007.

14. Crane, D., Pascarello, E., and Darren, J., Ajax in Action, Manning Publications, 2005.

15. Felfernig, A., Gula, B., An Empirical Study on Consumer Behavior in the Interaction with
Knowledge-based Recommender Applications, IEEE Joint Conference on e-Commerce
Technology (CEC’06) and Enterprise Computing, E-Commerce and E-Services (EEE'06), San
Francisco, IEEE Press, 2006, 288-296.

16. Felfernig, A., Shchekotykhin, K., Debugging User Interface Descriptions of Knowledge-based
Recommender Applications, Proceedings of ACM International Conference on Intelligent User
Interfaces, 2006, Sydney, 234-241.

17. Felfernig, A., Isak, K., and Russ, C., Knowledge-based Recommendation: Technologies and
Experiences from Projects, in Proceedings 17th European Conference on Artificial Intelligence
(ECAI06), Riva del Garda, Italy, 2006, 632-636.

18. Felfernig, A., Kiener, A., Knowledge-based Interactive Selling of Financial Services with
FSAdvisor, 17th Innovative Applications of Artificial Intelligence Conference (IAAI'05),
Pittsburgh, Pennsylvania, 2005, 1475-1482.

19. Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M., An Integrated Environment for the
Development of Knowledge-Based Recommender Applications, Intl. Journal of Electronic
Commerce, Special issue on Recommender Systems, Volume 11(2) Winter 2006-7, 11-34.

20. Felfernig, A. and Shchekotykhin, K., Debugging User Interface Descriptions of Knowledge-
based Recommender Applications, in Paris, C. and Sidner, C. (Eds): Proceedings of ACM
International Conference on Intelligent User Interfaces, Sydney, Australia, ACM New York,
234–241, 2006.

21. Frasincar, F., Houben, G.J., and Vdovjak, R., Specification Framework for Engineering
Adaptive Web Applications, Proceedings, 11th World Wide Web Conference (WWW’02) –
Web Engineering Track, Honolulu, 2002.

28 Rapid Development Of Knowledge-based Conversational Recommender Applications

22. Garrigós, I, Gómez, J., Barna, P., and Houben, G.-J., A reusable personalization model in Web
application design, Web Information Systems Modeling Workshop at ICWE’05, Sydney,
Australia, 2005, 42-49.

23. Garrigós, I., Gómez, J., and Canchero, C., Modeling Dynamic Personalization in Web
Applications, Proceedings Intl. Conference on Web Engineering (ICWE’03), Springer LNCS
2722, 2003, 472-475.

24. Gomez, J., Cachero, C.: Information OO-H Method: extending UML to model Web Interfaces,
in van Bommel, P., Modeling for Internet Applications, IDEA Group Publishing, 2003, 144–
173

25. Goodwill, J., Mastering JSP Custom Tags and Tag Libraries, Wiley Publishers, 2002.

26. Herlocker, J., Konstan, J., Terveen, L., and Riedl, J., Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems, 22, 1 (2004), 5–53.

27. Itoh, K., Kumagai, S., and Hirota, T. (Eds.), Domain Oriented Systems Development:
Perspectives and Practices. London, New York: Taylor & Francis, 2003

28. Jacyntho, M.D., Schwabe, D., and Rossi, G., A Software Architecture for Structuring complex
Web Applications, Journal of Web Engineering, 1 (1), October 2002, pp. 37-60.

29. Jiang, B., Wang, W., and Benbasat, I., Multimedia-based interactive advising technology for
online consumer decision support. Communications of the ACM, 48, 9 (2005), 93-98.

30. Jannach D., Kreutler G., Personalized User Preference Elicitation for e-Services. In: Cheung W.,
Hsu J. (Eds.): IEEE International conference on e-Technology, e-Commerce and e-Service,
Hong Kong, IEEE Computer Society, 2005, 604-611.

31. Jannach D., Finding Preferred Query Relaxations in Content-based Recommenders, Proceedings
of IEEE Intelligent Systems Conference IS'2006, Westminster, UK, IEEE Press, 355-360.

32. Jannach D., ADVISOR SUITE - A knowledge-based sales advisory system. In: R. Lopez de
Mantaras, L. Saitta (Eds.): Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI 2004), Valencia, Spain. Amsterdam: IOS Press, 2004, 720-724.

33. Jannach D., Kreutler, G., A Knowledge-Based Framework for the Rapid Development of
Conversational Recommenders. In: X. Zhou, S. Su, M. Papazoglou, M. Orlowska, K. Jeffery
(Eds.): Web Information Systems - WISE 2004, Springer New York, LNCS 3306, 2004, 390-
402.

34. Jannach D., Kreutler, G., Advisor Suite: A Tool for Rapid Development of Maintainable Online
Sales Advisory Systems. In: N. Koch, P. Fraternali, M. Wirsing (Eds.): Web Engineering, 4th
International Conference, ICWE 2004, Munich, Germany, Springer, LNCS, 3140, 2004, 266-
270.

D. Jannach and G. Kreutler 29

35. Jannach, D., Zanker, M., Knowledge-based sales advisory – Experiences and future directions,
Proceedings of Intl. Conference on E-Business, Setubal, Portugal, INSTICC Press, 2006, pp.
200-208.

36. Kappl, G., Web Engineering. The Discipline of Systematic Development of Web Applications,
Wiley, 2006.

37. Kobsa, A., Koenemann, J., and Pohl, W., Personalized Hypermedia Presentation Techniques for
Improving Online Customer Relationships, The Knowledge Engineering Review, 16 (2), 2001,
11-155.

38. Koch, N., Kraus, A., The expressive Power of UML-based Web Engineering. Second Int.
Worskhop on Web-oriented Software Technology (IWWOST’02), May 2002.

39. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J.,
GroupLens: applying collaborative filtering to Usenet news, Communications of the ACM, 40
(3), 1997, 77-87.

40. Krasner G.E., Pope S. T., A Description of the Model-View-Controller User Interface Paradigm
in the Smalltalk-80 System. ParcPlace Systems Inc., Mountain View, 1988.

41. Kruchten, P., The Rational Unified Process. An Introduction (3rd Ed.), Addison Wesley, 2004.

42. Lima, F., Schwabe, D., Application Modeling for the Semantic Web. Proceedings of LA-Web
2003, Santiago, Chile, Nov. 2003. IEEE Press, pp. 93-102.

43. McSherry, D., Incremental Relaxation of Unsuccessful Queries. Proceedings of the European
Conference on Case Based Reasoning, Madrid, Spain, 2004, 331-345.

44. McSherry, D., Retrieval Failure and Recovery in Recommender Systems, Artificial Intelligence
Review, Volume 24, Numbers 3-4, November 2005, 319-338.

45. Mirzadeh, N., Ricci, F., and Bansal, M., Supporting User Query Relaxation in a Recommender
System, Zaragoza, Spain: LNCS 3182, 2004, 31-40.

46. Muller, P.A., Studer, P., Fondement, F., and Bezivin, J., Platform independent Web application
modeling and development with Netsilon, Software & Systems Modeling, 4 (4), Springer, 2005,
242-442.

47. Nunes, D.A, Schwabe, D., Rapid prototyping of web applications combining domain specific
languages and model driven design. Proceedings of the 6th international conference on Web
Engineering, Palo Alto, California, USA, ACM Press, 2006, pp. 153-160.

48. Object Management Group, Software Process Engineering Metamodel Specification (SPEM),
Version 1.1., http://www.omg.org, January 2005.

49. Schafer, J., Konstan, J., Riedl, J., Electronic Commerce recommender applications. Journal of
Data Mining and Knowledge Discovery, 5, 1/2 (2000), 115-152.

30 Rapid Development Of Knowledge-based Conversational Recommender Applications

50. Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., and Nones, M. Product
Recommendation with Interactive Query Management and Twofold Similarity. 5th International
Conference on Case-Based Reasoning. Trondheim, Norway, 2003, 479-493.

51. Ricci, F., Del Missier, F., Supporting Travel Decision Making through Personalized
Recommendation. In: Clare-Marie Karat, Jan Blom, and John Karat (Eds.), Designing
Personalized User Experiences for eCommerce, Kluwer Academic Publisher, 2004, 221-251.

52. Rossi, G., Schwabe, D., and Guimaraes, R. M., Designing Personalized Web Applications,
Proceedings of Intl. World Wide Web Conference (WWW’01), Hong Kong, 2001, 275-284.

53. Schäfer, R., Rules for using multi-attribute utility theory for estimating a user's interests. In
Proceedings of Agent Based Information Systems Workshop (ABIS'01), Dortmund, Germany,
2001.

54. Smyth, B., Rafter, R., Conversational Collaborative Recommendation - An Experimental
Analysis, Artificial Intelligence Review, 24 (2/3), 2005, 301-318.

55. Stahl, T., Vylter, M., and Czarnecki, K., Model-Driven Software Development: Technology,
Engineering, Management, Wiley, 2006.

56. Reilly, J., McCarthy, K., McGinty, L., and Smyth, B., Incremental critiquing. Knowledge.-
Based Systems, 18 (4-5), 2005, 143-151.

57. Schwabe, D., Rossi, G., and Barbosa, S. D., Systematic hypermedia application design with
OOHDM. Proc. 7th ACM Conference on Hypertext (HYPERTEXT '96), Maryland, ACM Press,
1996, 116-128.

58. Schwabe, D., Guimaraes, R., and Rossi, G., Cohesive Design of Personalized Web
Applications. IEEE Internet Computing, 6 (2), March-April 2002, 34-43.

59. Terveen, L., Hill, W., Beyond recommender systems: Helping people help each other. HCI in
the New Millennium, Addison Wesley, 2001.

60. Thompson, C., Göker, M., and Langley, P., A Personalized System for Conversational
Recommendations. Journal of Artificial Intelligence Research 21, 2004, 393-428.

61. Vdovjak, R., Frasincar, F., Houben, G. J., and Barna, P., Engineering semantic Web information
systems in Hera. Journal of Web Engineering, Rinton Press, 2 (1&2), 2003, 3-026.

62. von Winterfeldt, D., and Edwards, W., Decision Analysis and Behavioral Research. Cambridge
University Press, Cambridge, UK, 1986.

63. Zanker, M., Bricman, M., Gordea, S., Jannach, D., and Jessenitschnig, M., Persuasive online-
selling in quality & taste domains. In: Bauknecht, K., Pröll B., Werthner, H. (Eds.): Proceedings
of 7th International Conference on Electronic Commerce and Web Technologies - EC-Web '06,
Springer LNCS 4082, Springer Berlin Heidelberg New York, 2006, pp. 51-60.

