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Abstract. Today’s configuration systems are centralized and do not allow man-
ufacturers to collaborate online for offer-generation or sales-configuration activ-
ities. However, the integration of configurable products into the supply-chain of
a business requires the cooperation of the various manufacturers’ configuration
systems to jointly offer valuable solutions to customers. As a consequence, there
is a need for methods that enable independent specialized agents to compute such
configurations. Several approaches to centralized configuration are based on con-
straint satisfaction problem (CSP) solving. Most of them extend traditional CSP
approaches in order to comply to the specific expressivity and dynamism require-
ments of configuration and similar synthesis tasks.
The distributed generative CSP (DisGCSP) framework proposed here builds on
a CSP formalism that encompasses the generative aspect of variable creation
and extensible domains of problem variables. It also builds on the distributed
CSP (DisCSP) framework, supporting configuration tasks where knowledge is
distributed over a set of agents. Notably, the notions of constraint and nogood
are further generalized, adding an additional level of abstraction and extending
inferences to types of variables. An example application of the new framework
describes modifications to the ABT algorithms and furthermore our evaluation
indicates that the DisGCSP framework is superior to classic DisCSP for typical
configuration task problem encoding.

1 Introduction/Background

The paradigm of mass-customization allows customers to tailor (configure) a product
or service according to their specific needs, i.e. the customer can select between sev-
eral features that should be included in the configured product and can determine the
physical component structure of the personalized product variant. Typically, there are
technical and marketing restrictions on the valid parameter constellations and the physi-
cal layout. This has led manufacturers to develop methods for checking the feasibility of
user requirements and for computing consistent solutions. Typically, this functionality
is provided by product configuration systems (configurators), which have proven to be
a successful application area for different AI techniques [18] such as description logics
[11], or rule-based [2] and constraint-based solving algorithms. [5] describes the indus-
trial use of constraint techniques for the configuration of large and complex systems
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such as telecommunication switches and [10] is an example of a powerful commer-
cialised tool based on constraint satisfaction.

However, companies find themselves having to cooperate with other highly special-
ized solution providers as part of a dynamic coalition to offer customized solutions.
The level of integration present in today’s digital markets implies that software systems
supporting selling and configuration tasks may no longer be conceived as standalone
systems. A product configurator can be therefore seen as an agent with private knowl-
edge that acts on behalf of its company and cooperates with other agents to solve a con-
figuration task. This paper abstracts the centralized definition of a configuration task in
[19] to a more general definition of a generative CSP that is also applicable to the wider
range of synthesis problems. Furthermore, we propose a framework that allows us to
extend DisCSPs to handle distributed configuration tasks by integrating the innovative
aspects of local generative CSPs:

1. The constraints (and nogoods) are generalized such that they depend on the types
rather than on the identities of variables. This also enables the following aspects to
be treated more elegantly.

2. The number of variables of certain types that are active in the local CSP of an
agent may vary depending on the state of the search process and is hence dynamic.
In the DisCSP framework, the external variables existing within the system are
predetermined.

3. The domain of the variables may vary dynamically. Some variables model pos-
sible connections and depend on the existence of components that could later be
connected.

Importantly, we also describe the impact of the previously mentioned changes on asyn-
chronous algorithms. In the following we motivate our approach with an example, Sec-
tion 3 defines a generative CSP and in Section 4 a distributed generative CSP is for-
malized and presented together with extensions to current DisCSP frameworks. Finally,
Section 5 evaluates DisGCSP encoding against classic DisCSP problem representation
for typical configuration problems.

2 Motivating example

The following presents a typical example problem from the domain of product con-
figuration ([5]) where interconnected systems support plug-in modules and problem
specific constraints describe the legal combinations of module types and their capacity
as well as their associated parameters. Figure 1 depicts a problem where systems con-
sist of modules of different types, namely A-, B-, and C-modules, and have optional
connection points for these modules (denoted as ports). For reasons of presentation the
example focuses only on a small subset of a larger configuration problem of a tech-
nical system (see dotted lines). System 1 consists of A- and B-modules where system
2 may have only A- and C-modules plugged in. The A-modules also act as an inter-
face between the two systems, i.e. they are shared by them. In addition, a module of
any type can be either set as active or inactive. The initial situation in Figure 1 depicts
the customer specific requirement that the configuration result contains at least one A-
module that is connected via a port to the sub-system. According to the compatibility



restrictions that will be described in the following, the found solution includes two ad-
ditional modules of type B and C, where all A- and C modules are set to active and
all B-modules to inactive. The distribution aspect is inherent in this scenario, as the

Fig. 1. Example problem

overall solution consists of sub-systems that are to be configured by different agents.
We formalize this configuration problem as a CSP, where each port and each module is
represented by a variable1. Since the exact number of problem variables is not known
from the beginning, constraints cannot be directly formulated on concrete variables.
Instead, comparable to programming languages, variable types exist that allow to asso-
ciate a newly created variable with a domain and we can specify relationships in terms
of generic constraints. [19] define a generic constraint γ as a constraint schema, where
meta-variables Mi act as placeholders for concrete variables of a specific type t, denoted
by the predicate type(Mi) = t. The subscript i allows to distinguish between different
meta-variables in one constraint2. In our example seven different types of problem vari-
ables exist, representing the ports for the three different module types (tpa, tpb, tpc) and
the activation status for each type of the modules (ta, tb, tc) as well as a type (tct ) of
counter variables (xtype) for the number of instantiations of each type. The configura-
tion constraints are distributed between the agents, i.e., each agent Si posesses a set of
local constraints3 Γ Si , i.e., Γ S1 = {γ1,γ2,γ5,γ7,γ9} and Γ S2 = {γ3,γ4,γ6,γ8,γ10}, that
are defined as follows:
Agent S1 ensures, that the amount of B-modules and its associated port variables must

1 Note, that the sub-system components themselves are not explicitly modeled, but only via their
characterizing port variables.

2 The exact semantics of generic constraints is given in Definition 2 in Section 3
3 In the example we omit those constraints that ensure that once a port variable is assigned a

value, the corresponding connected component variable must exist.



not be above 3.
γ1 : val(xpb)≤ 3. and γ2 : val(xb)≤ 3. where val(x) is a predicate that gives the assigned
value of variable x.
Similarly for agent S2, the amount of C-modules and its associated port variables must
not be above 3.
γ3 : val(xpc)≤ 3. and γ4 : val(xc)≤ 3.
Agent S1 resp. S2 check that there are more B- as well as C-modules than A-modules in
a configured system.
γ5 : val(xb) > val(xa). and γ6 : val(xc) > val(xa).
Agent S1 resp. S2 ensure that all B- resp. all C-modules have set the same activation
status.
γ7 : type(M1) = tb∧ type(M2) = tb∧ val(M1) = val(M2). and
γ8 : type(M1) = tc∧ type(M2) = tc∧ val(M1) = val(M2).
For agent S1 A- and B-modules must not have the same activation status.
γ9 : type(M1) = ta∧ type(M2) = tb∧ val(M1) 6= val(M2).
For agent S2 A- and C-modules must have the same activation status.
γ10 : type(M1) = ta∧ type(M2) = tc∧ val(M1) = val(M2).

During the search process the search space is continuously extended by the instan-
tiation of additional problem variables, until a solution is found that satisfies all the
constraints of each agent. The Agent view contains the problem variables shared be-
tween agents in order to assure the evaluation of local constraints. In our case γ6 and
γ10 are so-called inter-agent constraints, that require agent S2 to have access to all A-
modules and its associated port variables.
Consequently, a solution to a generative constraint satisfaction problem requires not
only finding valid assignments to variables, but also determining the exact size of the
problem itself. In the sequel of the paper we define a model for the local configurators
and we detail extensions to DisCSP algorithms.

3 Generative Constraint Satisfaction

In many applications, solving is a generative process, where the number of involved
components (i.e., variables) is not known from the beginning. To represent these prob-
lems we employ an extended formalism that complies to the specifics of configuration
and other synthesis tasks where problem variables representing components of the final
system are generated dynamically as part of the solution process because their total
number cannot be determined beforehand. The framework is called generative CSP
(GCSP) [6, 19]. This kind of dynamicity extends the approach of dynamic CSP (DCSP)
formalized by Mittal and Falkenhainer [12], where all possibly involved variables are
known from the beginning. This is needed because the activation constraints reason on
the variable’s activity state. [13] propose a conditional CSP to model a configuration
task, where structural dependencies in the configuration model are exploited to trigger
the activation of subproblems. Another class of DCSP was first introduced by [4] where
constraints can be added or removed independently of the initial problem statement.
The dynamicity occuring in a GCSP differentiates from the one described in [4] in the
sense that a GCSP is extended in order to find a consistent solution and the latter has



already a solution and is extended due to influence from the outside world (e.g., addi-
tional constraints) that necessitates finding a new solution. Here we give a definition
of a GCSP that abstracts from the configuration task specific formulation in [19] and
applies to the wider range of synthesis problems.

Definition 1 (Generative constraint satisfaction problem (GCSP)). A generative
constraint satisfaction problem is a tuple GCSP(X, Γ , T , ∆ ), where:

– X is the set of problem variables of the GCSP and X0 ⊆ X is the set of initially given
variables.

– Γ is the set of generic constraints.
– T = {t1, . . . , tn} is the set of variable types ti, where dom(ti) associates the same

domain to each variable of type ti, where the domain is a set of atomic values.
– For every type ti ∈ T exists a counter variable xti ∈X0 that holds the number of vari-

able instantiations for type ti. Thus, explicit constraints involving the total number
of variables of specific types and reasoning on the size of the CSP becomes possible.

– ∆ is a total relation on X × (T,N), where N is the set of positive integer numbers.
Each tuple (x,(t, i)) associates a variable x ∈ X with a unique type t ∈ T and an
index i, that indicates x is the ith variable of type t. The function type(x) accesses
∆ and returns the type t ∈ T for x and the function index(x) returns the index of x.

By generating additional variables, a previously unsolvable CSP can become solvable,
which is explained by the existence of variables that hold the number of variables.

When modeling a configuration problem, variables representing named connection
points between components, i.e., ports, will have references to other components as
their domain. Consequently, we need variables whose domain varies depending on the
size of a set of specific variables [19].

Example Given ta as the type of variables representing A-modules and tpa as the
type of port variables that are allowed to connect to A-modules, then the domain of the
pa variables dom(tpa) must contain references to A-modules. This is specified by defin-
ing dom(tpa) = {1, . . . ,ub}, where ub is an upperbound on the number of variables of
type ta, and formulating an additional generic constraint that restricts all variables of
type tpa using the counter variable for the total number of variables having type ta, i.e.,
type(M1) = tpa∧val(M1)≤ xta . With the help of the index() function concrete variables
can then be referenced.
Referring to our introductory example we can formalize the local GCSP of agent S1 in
the initial situation (see Figure 1) as XS1 = {xa,xpa,xb,xpb,xct ,a1,pa1}, Γ S1 = {γ1,γ2,γ5,γ7,γ9},
T S1 = {tct ,ta,tpa,tb,tpb} and ∆ S1= {(xa,(tct ,1)),(xpa,(tct ,2)), (xb, (tct ,3))(xpb,(tct ,4)),
(xct ,(tct ,5)),(a1, (ta,1)) (pa1,(tpa,1))}. The index(S1) function returns 1, which indi-
cates that a1 is the first A-module instance. The domains of variables are consequently
defined as dom(ta) = dom(tpa) = dom(tb) = dom(tpb) = dom(tct) = {1, . . . ,ub}, where
the domains for the port variables are additionally limited by domain constraints (e.g.,
γ1).

Definition 2 (Generic constraint). A generic constraint γ ∈Γ formulates a restriction
on the meta-variables Ma, . . . ,Mk. A meta-variable Mi is associated a variable type
type(Mi) ∈ T and must be interpreted as a placeholder for all concrete variables x j,
where type(x j) = type(Mi).



Note, that generic constraints can also formulate restrictions on specific initial variables
from X0 by employing the index() function.
Consider the GCSP(X , Γ , T , ∆ ) and let γ ∈ Γ restrict the meta-variables Ma, . . . ,Mk,
where type(Mi) ∈ T is the defined variable type of the meta variable Mi, then the con-
sistency of generic constraints is defined as follows:

Definition 3 (Consistency of generic constraints). Given an assignment tuple θ for
the variables X, then γ is said to be satisfied under θ , iff ∀xa, . . . ,xk ∈ X :
type(xa) = type(Ma)∧ . . .∧type(xk) = type(Mk)→ γ[Ma|xa , . . . ,Mk|xk ] is satisfied unter
θ , where Mi|xi indicates that the meta-variable Mi is substituted by the concrete variable
xi.

Thus a generic constraint must be seen as a constraint scheme that is expanded into a
set of constraints after a preprocessing step, where meta-variables are replaced by all
possible combinations of concrete variables having the same type, e.g., given a fragment
of a GCSP of agent S1 (excluding counter and port variables) with XS1 = {a1,b1,b2},
T S1 = {ta, tb} and ∆ S1 = {(a1,(ta,1)),(b1,(tb,1)),(b2,(tb,2))}, the satisfiability of the
generic constraint γ9 is checked by testing the following conditions: val(a1) 6= val(b1),
val(a1) 6= val(b2).

Definition 4 (Solution for a generative CSP). Given a generative constraint satisfac-
tion problem GCSP(X0, Γ , T , ∆0), then its solution encompasses the finding of a set of
variables X, type and index assignments ∆ and an assignment tuple θ for the variables
in X, s.t.

1. for every variable x∈X an assignment x = v is contained in θ , s.t. v∈ dom(type(x))
and

2. every constraint γ ∈ Γ is satisfied under θ and
3. X0 ⊆ X ∧∆0 ⊆ ∆ .

Note, that we do not impose a minimality criterium on the number of variables in our
solution, because in practical applications different optimization criteria exist, such as
total cost or flexibility of the solution, thus non-minimal solutions can be preferred over
minimal ones.
The calculated solution (excluding counter variables) for the local GCSP of agent a1
consists of XS1 = {a1, pa1, b1, b2, pb1, pb2}, ∆ S1 = {(a1,(ta,1)),(pa1,(tpa,1)),
(b1,(tb,1)), (b2,(tb,2)),(pb1,(tpb,1)),(pb2,(tpb,2))} and the assignment tuple a1 = 1,
pa1 = 1, b1 = 0, b2 = 0, pb1 = 1 and pb2 = 2. Thus, b1, . . . ,b2 and pb1, . . . , pb2 are the
names of generated variables.
Note, that names for generated variables are unique and can be randomly chosen by
the GCSP solver implementation and therefore constraints must not formulate restric-
tions on the variable names of generated variables. Consequently, substitution of any
generated variable (i.e., x ∈ X \X0) by a newly generated variable with equal type, in-
dex and value assignment has no effect on the consistency of generic constraints. Our
GCSP definition extends the definition from [19] in the sense that a finite set of variable
types T is given and during problem solving variables having any of these types can
be generated, whereas in [19] only variables of a single type, i.e., component variables,
can be created. Current CSP implementations of configuration systems (e.g., [10] [5])



use a type system for problem variables, where new variable instances, having one of
the predefined types, are dynamically created. This is only indirectly reflected in the
definition of [19] by the domain definition of component variables, which we explicity
represent here as a set of types. Furthermore, the definition of generic constraints does
not enforce the use of a specific constraint language for the formulation of restrictions.
Examples are the LCON language used in the COCOS project [19], or the configuration
language of the ILOG Configurator [10].
Note, that the set of variables X can be theoretically infinite, leading to an infinite search
space. For practical reasons, solver implementations for a GCSP put a limit on the total
number of problem variables to ensure decidability and finiteness of the search space.
This way a GCSP is reduced to a dynamic CSP and in further consequence to a CSP. A
DCSP models each search state as a static CSP, where complex activation constraints
are required to ensure the alternate activation of variables depending on the search state.
These constraints need to be formulated for every possible state of the GCSP, which
leads to combinatorial explosion of concrete constraints. Furthermore, the formulation
of large configuration problems as a DCSP is merely impractical from the perspective
of knowledge representation, which is crucial for knowledge-based applications such
as configuration systems.

4 DisGCSP Framework

Algorithms for configuration applications need to guarantee a good/optimal solution,
that’s why we focus on complete algorithms in our framework. The first asynchronous
complete search algorithm is Asynchronous Backtracking (ABT) [21]. An enhanced
version for several variables per agent is described in [22]. [3] shows how ABT can
be adapted to networks where not all agents can directly communicate to one another.
[7] makes the observation that versions of ABT with polynomial space complexity can
be designed. Extensions of ABT with asynchronous maintenance of consistencies, and
asynchronous dynamic reordering are described in [20, 15, 17]. [14] achieves an in-
creased level of abstraction in DisCSPs by letting nogoods (i.e. certain constraints)
consist of aggregates (i.e. sets of variable assignments), instead of simple assignments.

We show how the basic DisCSP framework for ABT [21] can be applied to a sce-
nario of distributed product configuration. Therefore, improving the performance of
ABT with extensions as referenced above is straightforward. We summarize in the fol-
lowing the properties of the ABT algorithm that guarantee its correctness and com-
pleteness [21]. Then we apply this DisCSP framework to a scenario where each agent
locally solves a generative constraint satisfaction task. Each time an agent extends the
solution space of his local GCSP by creating an additional variable, the DisCSP setting
is transformed into a new DisCSP setting, which again has all properties required by
asynchronous search to correctly function.

4.1 Asynchronous Search

We summarize the characteristics of asynchronous search algorithms like ABT [21],
reformulated to allow agents to know only the constraints that they enforce. They are
considered as follows:



1. A = {S1, . . .Sn} is a set of n totally ordered agents (i.e. representing different sub-
systems), where Si has priority over S j if i < j.

2. Each agent Si owns a variable4 and knows all the constraints that involve its vari-
able and only variables of higher priority agents.5 The constraints known by Si are
referred to as its local constraints, denoted Γ Si and Si is interested in those variables
that are contained in its local constraints. A link exists between two agents if they
share a variable, that is directed from the agent with higher priority to the agent
with lower priority. A link from agent S1 to agent S2 is referred to as an outgoing
link of S1 and an incoming link of S2.

3. An assignment is a pair (x j,v j), where x j is a variable, and v j a value for x j.
4. The view of an agent Si is a set of the most recent assignments received for those

variables agent Si is interested in.
5. The agents communicate using the following types of messages, where channels

without message loss are assumed:
– ok? message. Agents with higher priorities communicate via each ok? message

an assignment for their variable to lower priority agents.
– nogood message. In case an agent cannot find assignments that do not violate

its own constraints and its stored nogoods, it generates an explanation under
the form of an explicit nogood ¬N. A nogood can be interpreted as a constraint
that forbids a combination of value assignments to a set of variables. It is an-
nounced via a nogood message to the lowest priority agent that has proposed
an assignment in N.

– addlink message. The receiver agent is informed that the sender is interested
in its variable. A link is established from the higher priority agent to the agent
with lower priority.

4.2 Framework for DisGCSP

A distributed configuration problem is a multi-agent scenario, where each agent wants
to satisfy a local GCSP and agents keep their constraints private for security and privacy
reasons, but share all variables which they are interested in. As constraints employ meta-
variables, the interest of an agent in variables needs to be redefined:

Definition 5 (Interest in variables). An agent S j owning a local GCSPS j (XS j ,Γ S j ,
T S j ,∆ S j ) is said to be interested in a variable x ∈ XSh of an agent Sh, if there exists a
generic constraint γ ∈ Γ S j formulating a restriction on the meta-variables Ma, . . . ,Mk,
where type(Mi) ∈ T S j is the defined variable type of the meta variable Mi, and ∃Mi ∈
Ma, . . . ,Mk : type(x) = type(Mi).

Definition 6 (Distributed generative CSP). A distributed generative constraint satis-
faction problem has the following characteristics:

– A = {S1, . . . ,Sn} is a set of n agents, where each agent Si owns a local GCSPSi (XSi ,
Γ Si , T Si , ∆ Si ).

4 As described later, one can see this variable as a tuple of variables treated simultaneously.
5 In the original description of ABT, an agent also knows constraints on variables of higher

priority agents.



– All variables in
⋃n

i=1 XSi and all type denominators in
⋃n

i=1 T Si share a common
namespace, ensuring that a symbol denotes the same variable, resp. the same type,
with every agent.

– For every pair of agents Si,S j ∈ A and for every variable x ∈ XS j , where agent Si is
interested in x, must hold x ∈ XSi .

– For every pair of agents Si,S j ∈ A and for every shared variable x ∈ XSi ∩XS j the
same type and index must be associated to x in the local GCSPs of the agents, i.e.,
typeSi(x) = typeS j(x)∧ indexSi(x) = indexS j(x).

Consequently, for every pair of agents Si,S j ∈ A and for every shared variable x ∈
XSi ∩XS j a link must exist that indicates that they share variable x. The link must be
directed from the agent with higher priority to the agent with lower priority.

Definition 7. Given a distributed generative constraint satisfaction problem among a
set of n agents then its solution encompasses the finding of a set of variables X =⋃n

i=1 XSi , type and index assignments ∆ =
⋃n

i=1 ∆ Si and an assignment tuple θ =
⋃n

i=1 θ Si

for every variable in X, s.t. for all agents Si : XSi , ∆ Si and θ Si are a solution for the
local GCSPSi of agent Si.

Remark A solution to a distributed generative CSP is also a solution to a centralized
GCSP(

⋃n
i=1 XSi ,

⋃n
i=1 Γ Si ,

⋃n
i=1 T Si ,

⋃n
i=1 ∆ Si ).

Definition 8 (Generic assignment). A generic assignment is a unary generic con-
straint. It takes the form: 〈M, i,v〉, where M is a meta-variable, i is a set of index values
for which the constraint applies, and v is a value.

Definition 9 (Generic nogood). A generic nogood takes the form ¬N, where N is a set
of generic assignments for distinct meta-variables.

Value assignments to variables are communicated to agents via ok? messages that trans-
port generic assignments in our DisGCSP framework, which represent domain restric-
tions on variables by unary constraints. Each of these unary constraints in our DisGCSP
has attached an unique identifier called constraint reference (cr) [16]. Any inference has
to attach the crs associated to arguments into the obtained nogood. We treat the exten-
sion of the domains of the variables as a constraint relaxation [16]. For this reason we
introduce the next features for algorithm extensions:

– announce message broadcasts a tuple (x, t, i), where x is a newly created variable
of type t and with index i to all other agents. The receiving agents determine their
interest in variable x and react depending on their interest and priority in one of the
following ways (a) send an addlink message transporting the variable set {x} (b)
add the sending agent to its outgoing links or (c) discard the message.

– domain message broadcasts a set CR of obsolete constraint references. Any receiv-
ing agent removes all the nogoods having attached to them a constraint reference
cr ∈ CR. The receiver of the message calls then the function check agent view()
detailed in [21], making sure that it has a consistent proposal or that it generates
nogoods.



– nogood messages transport generic nogoods ¬N that contain assignments for meta-
variable instances. These messages are multicasted to all agents interested in ¬N.6

An agent Si is interested in a generic nogood ¬N if it has interest in any meta-
variable in ¬N.

– When an agent needs to revoke the creation of a new variable due to backtracking in
his local solving algorithm, he assigns it a specific value from its domain indicating
the deactivation of the variable and communicates it via an ok? message to all
interested agents.

In order to avoid too many messages a broker agent can be introduced that maintains
a static list of agents and their interest in variables of specific types comparable to a
yellow pages service. In this case the agent that created a new variables only needs to
request the broker agent for a list of interested agents and does not need to broadcast an
announce message to all agents.

Theorem 1. Whenever an existing extension of ABT is extended with the previous mes-
sages and is applied to DisGCSPs, the obtained protocols are correct, complete and
terminate.

Proof: Let us consider that we extend a protocol called P.
Completeness: All the generated information results by inference. If failure is inferred
(when no new component is available), then indeed no solution exists.
Termination: Without introducing new variables, the algorithm terminates. Since the
number of variables that can be generated is finite, termination is ensured.
Correctness: The resulting overall protocol is an instance of P, where the delays of
the system agent initializing the search equals the time needed to insert all the vari-
ables generated before termination. Therefore the result satisfies all the agents and the
solution is correct.

5 Evaluation

In order to test the applicability of our approach, we implemented a prototype for dis-
tributed generative constraint satisfaction on top of ILOG’s JConfigurator [8]. JCon-
figurator is a Java library providing an API for modeling and solving configuration
problems based on an underlying object-oriented constraint solver. Consistent with the
GCSP approach, the user of this library defines the problem in terms of components,
ports and attributes and states generic constraints that apply to the set of all instances of
a specific component type [8, 10].
Our framework provides a simple, experimental infrastructure for distributed reason-
ing among an arbitrary number of agents, each of which is capable of solving a local
GCSP, where there are no limitations on the number of component types or the com-
plexity of the constraints for the local GCSPs. However, for the purposes of evaluating
the framework, despite the lack of benchmarking problems, we restricted the structure
of the configuration problem to being similar to the example in Section 2 which still
captures the main characteristics of configuration problems. Our tests were limited to

6 The algorithm remains correct and terminates even if the nogoods are sent only to the target
decided as in ABT.



ports that connected the sub-systems with the modules and component types that were
characterized solely by one integer attribute (with a finite numerical domain). However,
the maximum number of the sub-system ports and component instances were only lim-
ited to a theoretical value.
In order to be able to compare our DisGCSP framework with the conventional DisCSP
framework, the example configuration problems were also modelled as static CSPs with
all possible component instances being generated prior to execution, where their do-
main was extended to include an additional value indicating their inactivity. Thus, we
were able to examine the effect of defining nogoods and constraints generically on the
number of interaction cycles between agents and compare it with the classical con-
straint and nogood formulation in DisCSPs. In addition, we found that the additional
computational costs for deriving minimal conflicts pays off given the potentially high
communication overhead of the message passing associated with additional interaction
cycles.
Architecture. The framework’s core is an Agent class that manages the agent view and
implements a variant of Yokoo’s Asynchronous Backtracking algorithm (i.e., sending
and processing ok? and nogood messages). Concrete agent instances (with their local
problems) are implemented by subclassing and overriding application specific meth-
ods, for example, the definition of components and constraints. Communication among
agents is based on message passing via a mediating agent that provides capabilities for
agent registration and system initialization and is capable of detecting when the dis-
tributed system reaches a stable state, i.e., a solution is found.
Conflict detection and exchange. The computation of nogoods (minimal conflicts) in
the case that the agent view is inconsistent, is based on Junker’s QUICKXPLAIN algo-
rithm [9], a efficient non-intrusive conflict-detector that recursively partitions the prob-
lem into subproblems of half the size and skips those that do not contain an element of
the propagation-specific conflict7. In the current version, we only compute a single min-
imal, conflict in each backtracking step, future work will include the concurrent compu-
tation of several conflicts. A computed conflict contains information about the number
of variables involved in the conflict as well as inconsistent variable assignments, where
we can detect when the inconsistency arises solely from variable cardinalities which
further improves the distributed search performance. Conflict exchange among agents
is based on serialization of the conflict information and the receiving agent’s automated
(re-)construction of the generic constraint.
Algorithm. Given the results from previous sections, several distributed constraint sat-
isfaction algorithms can be employed to solve the distributed configuration problem.
In our framework we currently employ a variant of Yokoo’s sound and complete ABT
algorithm without employing enhancements like dynamic agent ordering [1] or Aggre-
gation Search [14]. This choice was mainly driven by the characteristics of the con-
figuration domain, where the order of the agents is mainly determined by the supply
chain setting. The extensions include the handling of multiple variables by aggregating
variables according to their types: agents can request links to variable types (component
types in configuration terminology); thus, ok? messages contain the assignments of all

7 Note, that we are only interested in propagation-specific conflicts that are induced by the values
in the agent view.



currently existing variables of a given type, where each variable type is owned by ex-
actly one agent. The computation of local solutions is performed by the underlying con-
straint solver. The additional task of applying dynamic agent ordering or configuration-
specific heuristics remains part of our future work.
Measurements. Several initial tests (Table 1) were carried out on our framework using
the configuration problems as described above, varying the size of the configuration
problem, the number of agents as well as the local search strategies and problem com-
plexity in order to obtain significant distributed search and backtracking activity8. The
results shown in Table 1 present the behavior of the various distributed systems for the
same problem ecoded both as Generative Constraint Satisfaction Problem with a given
upper bound of possible component instances and as a static CSP. For distributed rea-
soning, the identical variant of Yokoo’s ABT search (with support for multiple variables
per agent) is employed, where in the case of the GCSP problem generic nogoods are
exchanged among the agents. In both settings the explanation facilities for computing
minimal nogoods were utilized.
It is well known that formalisms that extend the static CSP paradigm such as Dy-
namic CSP or Generative CSP have advantages for non-distributed problem solving
both from modeling, knowledge acquisition, and maintenance perspectives as well as
from a solution search point of view. In a distributed settings where the configuration
constraints are distributed among several cooperating agents, the non-generic approach
suffers from the problem of heavy messaging traffic that is induced by the increased
number of required interaction cycles for finding a solution. In the case of traditional
CSP encoding, a receiving agent is only capable of computing minimal conflicts involv-
ing concrete variable instances, however in the generic case the agent can deduce and
report generic nogoods to the sending agent. It is the fact that - in the GCSP and config-
uration problem setting - individual variable (i.e., component) instances of a given type
are interchangeable. Therefore, reporting a nogood prevents the sending agent from
communicating an interchangeable solution which would again cause an inconsistency
for the receiving agent.

Table 1 contains the average time measurements for finding the first solution in five
different configuration scenarios with varying complexity. Each problem instance was
examined several times as differences occur due to the indeterministic behavior of the
parallel execution of the agents. The problem sizes (i.e. the number of component types
or agents) are realistic for the scenarios addressed within the CAWICOMS project.
Furthermore, the scenarios reflect the fact that in a supply chain setting only a small
portion of the local configuration problems are shared among the agents. The local GC-
SPs are underconstrained; using more complex problems would result in an increase in
the amount of time needed for consistency checks and the local solution search which
is done by the constraint solver. The actual number of problem variables is determined
by the number of component instances, the cardinality variables for all types and the
internally generated variables that allow the formulation of n-ary constraints. While the

8 Note, that in the configuration domain, the number of co-operating agents of the companies
involved in the supply chain is typically very low (< 10), the agents are usually loosely coupled
and the problems are typically underconstrained.



Table 1. Comparison of DisGCSP and DisCSP encoding

Nbr. of Nbr. of Nbr. of Shared Overall Check-

Encoding agents CT inst inst time time NG Msgs Checks

DisGCSP(1) 3 10 30 12 3.25 1.72 25 75 134

DisCSP(1) 23.20 14.30 165 477 820

DisGCSP(2) 6 22 120 27 8.53 3.21 40 126 210

DisCSP(2) 37.47 14.28 211 644 1105

DisGCSP(3) 10 30 140 65 13.90 5.05 63 205 375

DisCSP(3) 89.60 34.50 594 1792 3024

DisGCSP(4a) 12 36 164 87 15.32 5.03 66 238 403

DisCSP(4a) 127.44 38.30 705 2635 4094

DisGCSP(4b) 12 36 164 87 41.02 8.30 136 588 889

DisCSP(4b) 2600 128.00 3646 16476 23452

CT: component/variable types NG: overall number of
inst: instances recorded nogoods/backtracks
shared instances: shared component instances Msgs: overall number of messages
Check-time: consistency, search Checks: overall number of
and explanation per agent consistency checks and searches

net search times are secondary9, the experiments showed that the generative variant
performs significantly better in terms of required interaction cycles, stored nogoods and
messages.
Figure 2 visualizes the run times for the different sample problems. Note that problem
instances 4(a) and 4(b) are identical in terms of problem size and distribution among
agents but differ in search complexity, i.e., problem 4(b) contains a problematic con-
straint constellation that causes the run-times of the static CSP approach to increase
dramatically. While message passing is quite cheap in our multi-threaded prototype,
the cost of agent communication in real distributed environments is a crucial factor.
Memory requirements for storing nogoods are not problematic because they are mini-
mal and can hence be represented in a compact way; however, minimizing the number
of search cycles by reducing the search space through the elimination of interchange-
able solutions leads to overall performance enhancements especially in cases where the
local configuration problems are complex. Beside the advantage of offering a faster dis-
tributed solution search, the GCSP approach has significant advantages for the domain
of real-world distributed configuration problems in terms of knowledge maintenance:
the problem of modeling and maintaining shared agent knowledge and agent interde-

9 The time measurements where made on a standard PC where the parallel agent threads run in
one single process; overall memory consumption was in all DisGCSP test cases below 25 MB.



Fig. 2. Comparing run times for different problem settings.

pendencies is neglected in many DisCSP approaches and alleviated in a DisGCSP set-
ting through the introduction of variable types and generic constraints, thus eliminating
the need for error-prone task of encoding problems as static CSPs.
Finally, the experiments showed that the integration of distributed configuration capa-
bilities into a commercial configuration tool like JConfigurator is feasible and lays the
foundation for the application of distributed constraint solving in real-world environ-
ments.

6 Conclusions

Building on the definition of a centralized configuration task from [19], we formally
defined a new class of CSP, termed generative CSP (GCSP), that generalizes the ap-
proaches of current constraint-based configurator applications [5, 10]. The innovative
aspects include an additional level of abstraction for constraints and nogoods. Con-
straints and nogoods may consist of variable types instead of solely variables. Further-
more, we extended GCSP to a distributed scenario, allowing DisCSP frameworks to be
adapted to dynamic configuration problems (but it can be used in static models as well)
and described how this enhancement can be integrated into a large family of existing
asynchronous DisCSP algorithms. Initial evaluations indicate that GCSP is practical for
typical distributed configuration problems.
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