
Development of a Collaborative and
Constraint-Based Web Configuration System for
Personalized Bundling of Products and Services

Markus Zanker1,2, Markus Aschinger1, and Markus Jessenitschnig3

1 University Klagenfurt, Austria
markus.zanker@uni-klu.ac.at

2 ConfigWorks Informationssysteme & Consulting GmbH, Austria
masching@edu.uni-klu.ac.at

3 eTourism Competence Center Austria (ECCA)
markus.jessenitschnig@etourism-austria.at

Abstract. The composition of product bundles like tourism packages,
financial services portfolios or compatible sets of for instance skin care
products is a synthesis task that requires knowledgeable information sys-
tem support. We present a constraint-based Web configurator capable of
solving such tasks in e-commerce environments. Our contribution lies in
hybridizing a knowledge-based configuration approach with collabora-
tive methods from the domain of recommender systems in order to guide
the solving process by user preferences through large product spaces. The
system is implemented on the basis of a service-oriented architecture and
supports a model-driven approach for knowledge acquisition and main-
tenance. An evaluation gives acceptable computation times for realistic
problem instances.

1 Introduction

In many e-commerce situations consumers are not looking for a single product
item but they require a set of several different products. For instance on e-
tourism platforms online users may either selectively combine different items
like accommodation, travel services, events or sights - or they might choose from
an array of pre-configured packages. When bundling different items on their own
users are performing a synthesis task comparable to configuration.

Mittal and Frayman [1] defined configuration as a special type of design activ-
ity, with the key feature that the artifact being designed is assembled from a set
of pre-defined components. When bundling different products with each other,
product categories represent these pre-defined components. Additional knowl-
edge is required that states which combinations of components are allowed and
which restrictions need to be observed. For instance, proposed leisure activities
should be within reach from the guest’s accommodation or recommended sights
need to be appropriate for kids if the user represents a family. Nevertheless, the
problem of computing product bundles that are compatible with a set of do-
main constraints differs from traditional configuration domains in the sense that

B. Benatallah et al. (Eds.): WISE 2007, LNCS 4831, pp. 273–284, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

274 M. Zanker, M. Aschinger, and M. Jessenitschnig

fewer restrictions apply. For instance a car configurator computes a valid vehicle
variant satisfying the user’s requirements and all applicable commercial and tech-
nical restrictions that derive from the manufacturer’s marketing and engineering
experts. Contrastingly, when configuring a product bundle relatively fewer strict
limitations will apply, because not a new materialized artifact is created but
an intangible composition of products or services is defined. As a consequence
an order of magnitude more combinations of components are possible and the
question of finding an optional configuration becomes crucial.

Optimality can be either interpreted from the provider perspective, e.g. the
configuration solution with the highest profit margin, or from the customer per-
spective. In the latter case the product bundle that best fits the customer’s
requirements and preferences is proposed. Recommender systems are intended
to derive a ranked list of product instances following an abstract goal such as
maximizing user’s utility or online conversion rates [2]. For instance collaborative
filtering is the most common recommendation technique. It exploits clusters of
users that showed similar interest in the past and proposes products that their
statistically nearest neighbors also liked [3]. We exploit this characteristic of rec-
ommender systems for deriving a personalized preference ordering for each type
of product in our configuration problem. Our contribution thus lies in integrat-
ing a constraint-based configuration approach with soft preference information
that derive from recommender systems based on for instance the collaborative
filtering paradigm. This way we can guide the solving process towards finding
optimal product bundles according to the users assumed preference situation.

Contrasting the work of Ardissono et al. [4] and of Pu and Faltings [5] we do
not require explicit preference elicitation by questioning or example-critiquing,
but depending on the underlying recommendation paradigm community knowl-
edge and past transaction data are utilized.

The paper is structured as follows: First we give an extensive elaboration on
related work and then present a motivating example for illustration purposes in
Section 3. Furthermore, we give details on the system development in Section 4
and finalize with practical experiences and conclusions.

2 Related Work

Configuration systems are one of the most successful applications of AI-
techniques. In industrial environments they support the configuration of complex
products and services and help to reduce error rates and throughput time signif-
icantly compared to manual processes. Depending on the underlying knowledge-
representation mechanism rule-based, model-based and case-based frameworks
for product configuration exist [6]. Configurators that build on the constraint
satisfaction problem (CSP) paradigm are within the family of model-based ap-
proaches [7,8]. They clearly separate between an explicitly represented knowledge
base and a problem solving strategy. In technical domains such as telephone
switching systems large problem instances with tens of thousands of compo-
nents exist. Efficient solving strategies exploit the functional decomposition of

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

Collaborative and Constraint-Based Web Configuration System 275

the product structure to determine valid interconnections of the different com-
ponents with each other [7]. Pure sales configuration systems such as online car
or pc configuration systems1 are much simpler from the computational point of
view. They allow their users to explore the variant space of different options and
add-ons and ensure that users place orders that are technically feasible and have
a correct price. However, these systems are typically not personalized, i.e. they
do not adapt their behavior according to their current user.

The CAWICOMS project was among the first to address the issue of personal-
ization in configuration systems [4]. They developed a framework for a personal-
ized, distributed Web-based configurator. They build on dynamic user interfaces
that adapt their interaction style according to abstract user properties such as
experience level or needs situation. The system decides on the questioning style
(e.g. asking for abstract product properties or detailed technical parameters)
and computes personalized default values if the user’s assumed expertise is not
sufficient for answering. Pu and Faltings [5] present a decision framework based
on constraint programming. They show how soft constraints are well-suited for
supporting preference models. Their work concentrates on explicitly stated user
preferences especially via an example critiquing interaction model. This way
tradeoff decisions are elicited from users. Given a specific product instance users
may critique on one product property and specify on which other properties they
would be willing to compromise. Soft constraints with priority values are revised
in such an interaction scenario and guide the solution search.

In contrast to the work in [4,5], we do not solely rely on explicitly stated
user feedback, but integrate configuration with recommender systems to include
assumed user preferences.

Recommender systems constitute a base technology for personalized interac-
tion and individualized product propositions in electronic commerce [2]. How-
ever, they do not support synthesis tasks like configuration. Given sets of items
and users, recommender systems compute for each single user an individualized
list of ranked items according to an abstract goal such as degree of interest
or buying probability [2]. Burke [9] differentiates between five different recom-
mendation paradigms: collaborative, demographic and content-based filtering as
well as knowledge and utility-based recommendation. Collaborative filtering is the
most well known technique that utilizes clusters of users that showed similar pref-
erences in the past and recommends those items to a user her cluster neighbors
have liked [3,10]. Content-based filtering records those items the user has highly
rated in the past and proposes similar ones. Successful application domains are
for instance news or Web documents in general, where the system learns user
preferences in the form of vectors of term categories [11]. Demographic filter-
ing builds on the assumption that users with similar social, religious or cultural
background share similar views and tastes. Knowledge- and utility-based meth-
ods rely on a domain model of assumed user preferences that is developed by a
human expert. Jannach [12] developed a sales advisory system that maps explic-
itly stated abstract user requirements onto product characteristics and computes

1 For instance, see http://www.bmw.com or http://store.apple.com

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

276 M. Zanker, M. Aschinger, and M. Jessenitschnig

a set of best matching items. Case-based recommender systems exploit former
successful user interactions denominated as cases. When interacting with a new
user, the system retrieves and revises stored cases in order to make a proposition.
Thus, a human expert is required to define efficient similarity measures for case
retrieval [13]. Burke [14] and Ricci [15] have researched and developed several
systems within this field.

We integrated our configurator with a polymorphic recommendation service
that can be instantiated with an arbitrary recommendation paradigm [16]. De-
tails will be given in Section 4.

Preference-based search takes a more interactive and dynamic approach to-
wards personalized retrieval of items. They build and revise the preference model
of the user during interaction, instead of having it beforehand. One of the first
applications of interactive assessment of user preferences was the Automated
Travel Assistant [17]. Further extensive works on interactive preference elici-
tation has been conducted recently [18,19,20] and [21] includes an extensive
overview.

The work on preference-based search is orthogonal to our contribution. Our
implementation supports interactivity between the system and the user during
exploration of the search space. Therefore, additional preference constraints can
be added and revised at each round of interaction (see Subsection 4.4).

3 Motivating Example

We start the description of our approach by giving a motivating example. Fig-
ure 1 depicts a service configuration scenario from the e-tourism domain. The
user model states a set of specific requirements for John like a travel package
to the city of Innsbruck or that the solution should be appropriate for a fam-
ily with children. In addition, contextual parameters like the weather situation
or the current season are represented in the system context. Concrete product
instances and their evaluations are part of the Product model, e.g. sights or
restaurants. The dotted arrows exemplify some constraints of the configuration
knowledge base like The location of the Sight/Restaurant/Event and the loca-
tion of the Accommodation should be the same or If the weather outlook is rainy
propose an indoor event. Additional preference information is included into the
configuration knowledge base by integrating recommendation services for each
class of products: for instance, when collaborative filtering recommends items
from the product class Event, transaction records of other users and the interac-
tion history of John will be exploited. Consequently, the higher ranked items in
the recommendation result are more probable to be included in the configuration
solution.

Informally, given a User Model, a System context and a set of constraining
dependencies, the task of the system is to find a set of products from different
categories that is optimal with respect to the preference information derived from
external recommender systems. In the following we will detail the development
of the system.

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

Collaborative and Constraint-Based Web Configuration System 277

Fig. 1. Example scenario

4 Development

When designing the system we decided on the constraint programming paradigm
for knowledge representation and problem solving - comparable to most of the
configuration systems referenced in Section 2. The Choco Open Source constraint
library [22] in Java is the basis for our implementation. In the next subsections
we will describe the constraint-representation of the domain model, aspects of
knowledge acquisition as well as our system architecture.

4.1 Architecture

In Figure 2 we sketch the system architecture. It consists of a configuration ser-
vice component and several recommender services delivering personalized rank-
ings of instances from a given class of products. We realized a service-oriented
architecture that supports communication via Web services, a php-API and a
Java-API. This enables flexible integration with different Web applications, dis-
tributed deployment scenarios and ensures the extensibility towards additional
recommendation services. The latter requires sharing the identities of users and
product instances as well as the semantics of user and product characteristics
among all components. This is realized by a central user and product model
repository offering service APIs, too.

The user interacts with a Web application, that itself requests personalized
product bundles from the configurator via the service-API. The evaluation of
contextual parameters can be requested by the same communication means. We
have implemented variants of collaborative and content-based filtering recom-
menders as well as utility and knowledge-based ones as sketched in [16]. A more
detailed evaluation of different recommendation strategies on commercial data
was done in [23]. Next, we will detail on the domain model for the configuration
service itself.

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

278 M. Zanker, M. Aschinger, and M. Jessenitschnig

Fig. 2. System architecture

4.2 Model Representation

The constraint satisfaction paradigm is employed for knowledge representation.
A Constraint Satisfaction Problem (CSP) is defined as follows [24]:

A CSP is defined by a tuple 〈X, D, C〉, where X = {x1, . . . , xn} is a set of
variables, D = {d1, . . . , dn} a set of corresponding variable domains and C =
{c1, . . . , cm} a set of constraints.

Each variable xi may only be assigned a value v ∈ di from its domain. A con-
straint cj further restricts the allowed assignments on a set of variables. On each
partial value assignment to variables it can be determined if a constraint is violated
or not. In addition, all constraints cj ∈ C are defined to be either hard (cj ∈ Chard)
or soft (cj ∈ Csoft), where C = Chard ∪ Csoft and Chard ∩ Csoft = ∅. Soft con-
straints may be violated. Each of them is associated with a penalty value and the
sum of penalty values of violated constraints has to be minimized when looking for
an optimal solution. For further details and definitions of CSPs we refer to [24].

Next, based on this formalization we present our domain model. It consists of
a tuple 〈U, P, XUM , XCx, XPM , DPM , Chard, Csoft〉, where:

– U = {u1, . . . , un} is a set of users,
– P = {p1, . . . , pi} a set of product classes - each is associated with a recom-

mendation service that delivers a personalized item ranking upon request,
– weight(pj) the relative weight of product class pj used in the overall opti-

mization function,
– XUM = {x1, . . . , xj} a set of variables from the User model,
– XCx = {x1, . . . , xk} a set of variables modeling the system context,
– XPM = {p1.x1, . . . , p1.xm, . . . , pi.x1, . . . , pi.xo} a set of variables modeling

product properties, where p.x denotes the product property x of product
class p and p[j].x the concrete evaluation of x for product instance j,

– DPM = {p1.d1, . . . , p1.dm, . . . , pi.d1, . . . , pi.do} a set of corresponding do-
mains for product properties,

– Chard = {c1, . . . , cp} a set of hard constraints on variables in X = XUM ∪
XCx ∪ XPM ,

– Csoft = {c1, . . . , cq} a set of soft constraints on variables in X and finally
– pen(cj) the penalty value for relaxing soft constraint cj .

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

Collaborative and Constraint-Based Web Configuration System 279

This domain model is defined and maintained by domain experts themselves in
order to reduce the traditional knowledge acquisition bottleneck as outlined in
the next subsection.

4.3 Model Definition and CSP Generation

Model definition and maintenance is supported by a modular editor environment
based on the Eclipse RCP (Rich-Client Platform) technology2. Figure 3 gives an
impression of the interaction with the knowledge acquisition workbench. First,
those user characteristics that are relevant for solving are retrieved from the User
model repository. Second, additional external services providing contextual data
such as the current season of the year or weather information are selected. In a
third step, the set of product classes P and their associated recommender services
are integrated. For each class of products relevant properties are selected from
the underlying repository. Finally, hard and soft constraints are defined using a
context-sensitive editor.

In Figure 4 we depict the whole process. It is separated into a design phase,
where the model is defined and maintained, and an execution phase. During the
latter a specific user u is given, when the configurator is invoked. First, product
rankings are retrieved from recommendation services and then corresponding
product characteristics are requested from the product model repository. In the

Fig. 3. Knowledge acquisition workbench

2 See http://www.eclipse.org/rcp for reference

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

280 M. Zanker, M. Aschinger, and M. Jessenitschnig

Fig. 4. Design and Execution phase

next step, all variables in XUM ∪XCx are assigned values by requesting the User
model repository and the context services.

Then a CSP model is generated on the fly and the following transformation
steps are done:

– Create all variables in XUM ∪ XCx in the CSP model and assign them their
respective evaluations.

– For each product class p ∈ P , p[1] denotes the highest ranked product in-
stance and p[pn] the lowest ranked one. For all p ∈ P we create an index
variable p.idx with the domain p.didx = {1, . . . , pn}. The index represents
the preference information on the instances of a product class. If two prod-
uct instances fulfill all constraints then the one with the lower index value
should be part of the recommended bundle.

– Create all variables in XPM and assign them domains as follows: ∀p ∈
P ∀p.x ∈ XPM ∀i ∈ p.didx p[i].x ∈ p.dx, i.e. for a given product prop-
erty x of class p all evaluations of recommended instances need to be in its
domain p.dx.

– Furthermore, integrity constraints are required to ensure that the value
assigned to the index variable of product class p is consistent with the
values assigned to its product properties p.x: ∀p ∈ P ∀p.x ∈ XPM ∀i ∈
p.didx p.idx = i → p.x = p[i].x. Hence product instances are modeled,
although the Choco CSP formalism does not support object orientation.

– Insert all domain constraints from Chard ∪ Csoft.
– For each soft constraint c ∈ Csoft, create a variable c.pen that holds the

penalty value pen(c) if c is violated or 0 otherwise.
– Create a resource variable res and a constraint defining res as the

weighted sum of all variables holding penalty values for soft constraints and
all weighted index variables. The tradeoff factor between soft constraints and

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

Collaborative and Constraint-Based Web Configuration System 281

product class indexes as well as all weights can be adapted via the knowledge
acquisition workbench.

4.4 CSP Solving

Once the CSP model is generated, the Choco solver is invoked utilizing its opti-
mization functionality. The goal is to find an assignment to all variables in the CSP
model that does not violate any hard constraint and minimizes the resource vari-
able res. We extended the branch and bound optimization algorithm [22] to com-
pute the top n solution tuples instead of solely a single product bundle. The solver
is capable of following two different strategies for computing n product bundles,
namely 1-different and all-different. 1-different signifies that each tuple of product
instances in the set of n solutions contains of at least one product instance that
is different in all other solution bundles. In contrast all-different means that the
intersection between two product bundles from the set of solutions is empty, i.e.
a product instance may only be part of at most one solution tuple. In the next
section we report on computation times for CSP generation and solving.

5 Evaluation

Based on our e-tourism application domain we developed an example scenario
consisting of 5 product classes with a total of 30 different product properties.
Their domains are string, bounded integer and boolean. We defined a total of
23 representative domain constraints (13 hard and 10 soft constraints) for con-
figuration knowledge.

We varied the number of the requested product instances from recommender
services in 5 different steps between 5 and 100 and denoted the resulting CSP
models M1 to M5. Details on problem sizes and times for ’on-the-fly’ generation
of CSP models are given in Table 1. As can be seen, the number of variables
does not depend on the number of recommendations and stays the same for all
models. However, the average size of variable domains increases from M1 to M5
due to the higher amount of product instances per product class. The number of
constraints depends mainly on the aforementioned integrity constraints to model
product instances. Therefore, M5 contains ten times more constraints than M1.

Table 1. Model sizes used in evaluation

Model Number of Number Average Number of Generation
Recommendations of Vars Domain Size Constraints time in ms

M1 5 58 7,45 206 10
M2 10 58 8,73 374 20
M3 30 58 13,55 1010 60
M4 50 58 16,5 1355 95
M5 100 58 23,23 2093 135

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

282 M. Zanker, M. Aschinger, and M. Jessenitschnig

Fig. 5. Results for solution strategies 1-different (left) and all-different (right)

As can be seen in Table 1, the times for generating even the large M5 model are
acceptable for interactive applications.

In order to evaluate the performance of our system we ran the experiments on
a standard Pentium 4 3GHz processor. The time measurements for the solving
step are depicted in Figure 5. For each model we ran the experiment for 100
users and averaged times. We evaluated both strategies to compute a set of top
n solution tuples as well as varied the number of n between 1 and 10. The solving
times (y-axis) for the all-different strategy are on a logarithmic scale. Moreover,
we skipped graphs for M3 and M4 for better readability. The 1-different strategy
is less complex and therefore solving time does not exceed 50 ms. To the contrary,
all-different requires significantly longer computation times. Nevertheless, the
performance is still satisfactory. The highest value for model M5 is about 1.5
seconds with 10 solutions computed for a reasonable problem in our domain.
Although in typical e-commerce situations at most 10 different product bundles
will be required, requests for 100 solution tuples can still be handled within a
satisfying time range. For instance, when using the 1-different solution strategy
the solver required around 220 ms to calculate the top 100 solutions for model
M5. In case of all-different 15 solutions are the maximum amount of solutions
we could find within the same model. It took us 6 seconds which indicates the
bottleneck of an interactive system.

Nevertheless, we have evidence to believe that our integration of a configurator
with different recommender systems is efficient enough to solve standard prod-
uct bundling tasks in online sales situations. Further experiments in different
example domains will be conducted.

6 Conclusion

We presented the development of a generic Web configurator that is realized
by integrating recommendation functionality with a constraint solver. Thus, our

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

Collaborative and Constraint-Based Web Configuration System 283

contribution lies in a novel strategy to personalize configuration results on prod-
uct bundles. The system observes on the one hand explicit domain restrictions
and on the other hand user preferences deriving from recommender systems. The
application is developed within the scope of an industrial research project in the
e-tourism domain. Our evaluation on realistic problem sizes showed acceptable
computation times and system deployment is planned for the next months.

References

1. Mittal, S., Frayman, F.: Toward a generic model of configuration tasks. In: 11th

International Joint Conferences on Artificial Intelligence, Menlo Park, California,
pp. 1395–1401 (1989)

2. Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6) (2005)

3. Resnick, P., Iacovou, N., Suchak, N., Bergstrom, P., Riedl, J.: Grouplens: An open
architecture for collaborative filtering of netnews. In: Computer Supported Collab-
orative Work (CSCW), Chapel Hill, NC (1994)

4. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G.,
Schäfer, R., Zanker, M.: A framework for the development of personalized, dis-
tributed web-based configuration systems. AI Magazine 24(3), 93–108 (2003)

5. Pu, P., Faltings, B.: Decision tradeoff using example-critiquing and constraint pro-
gramming. Constraints 9, 289–310 (2004)

6. Sabin, D., Weigel, R.: Product configuration frameworks - a survey. IEEE Intelli-
gent Systems 17, 42–49 (1998)

7. Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., Stumptner, M.: Con-
figuring large systems using generative constraint satisfaction. IEEE Intelligent
Systems 17, 59–68 (1998)

8. Mailharro, D.: A classification and constraint-based framework for configuration.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing 12, 383–
397 (1998)

9. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction 12(4), 331–370 (2002)

10. Pazzani, M.: A framework for collaborative, content-based and demographic filter-
ing. Artificial Intelligence Review 13(5/6), 393–408 (1999)

11. Balabanovic, M., Shoham, Y.: Fab: Content-based, collaborative recommendation.
Communications of the ACM 40(3), 66–72 (1997)

12. Jannach, D.: Advisor suite - a knowledge-based sales advisory system. In: de Man-
taras, L.S.L. (ed.) PAIS. 16th European Conference on Artificial Intelligence - Pres-
tigious Applications of AI, pp. 720–724. IOS Press, Amsterdam (2004)

13. O‘Sullivan, D., Smyth, B., Wilson, D.: Understanding case-based recommendation:
A similarity knowledge perspective. International Journal of Artificial Intelligence
Tools (2005)

14. Burke, R.: The Wasabi Personal Shopper: A Case-Based Recommender System. In:
IAAI. 11th Conference on Innovative Applications of Artificial Intelligence, Trento,
IT, pp. 844–849. AAAI, USA (2000)

15. Ricci, F., Werthner, H.: Case base querying for travel planning recommendation.
Information Technology and Tourism 3, 215–266 (2002)

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

284 M. Zanker, M. Aschinger, and M. Jessenitschnig

16. Zanker, M., Jessenitschnig, M.: Iseller - a generic and hybrid recommendation
system for interactive selling scenarios. In: ECIS. 15th European Conference on
Information Systems, St. Gallen, Switzerland (2007)

17. Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models:
The automated travel assistant. In: UM. 5th International Conference on User
Modeling, Lyon, France (1997)

18. Shimazu, H.: Expert clerk: Navigating shoppers‘ buying process with the combi-
nation of asking and proposing. In: IJCAI. 17th International Joint Conference on
Artificial Intelligence, pp. 1443–1448 (2001)

19. Smyth, B., McGinty, L., Reilly, J., McCarthy, K.: Compound critiques for conver-
sational recommender systems. In: IEEE/WIC/ACM International Conference on
Web Intelligence (WI), pp. 145–151. IEEE Computer Society, Washington, DC,
USA (2004)

20. Viappiani, P., Faltings, B., Pu, P.: Evaluating preference-based search tools: a tale
of two approaches. In: AAAI. 22th National Conference on Artificial Intelligence
(2006)

21. Viappiani, P., Faltings, B., Pu, P.: Preference-based search using example-
critiquing with suggestions. Artificial Intelligence Research 27, 465–503 (2006)

22. Laburthe, F., Jussien, N., Guillaume, R., Hadrien, C.: Choco Tutorial, Sourceforge
Open Source, http://choco.sourceforge.net/tut base.html

23. Zanker, M., Jessenitschnig, M., Jannach, D., Gordea, S.: Comparing recommenda-
tion strategies in a commercial context. IEEE Intelligent Systems 22, 69–73 (2007)

24. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London, UK
(1993)

Zanker M., Aschinger M., Jessenitschnig M.: Development of a Collaborative and Constraint-Based Web Configuration System for Personalized
Bundling of Products and Services. In: B. Benatallah et al. (Hrsg.): 8th International Conference on Web Information Systems Engineering,
Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

http://choco.sourceforge.net/tut_base.html

	Introduction
	Related Work
	Motivating Example
	Development
	Architecture
	Model Representation
	Model Definition and CSP Generation
	CSP Solving

	Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

