

are learned from rating distribution as shown in Figure 2 b). Using historical
data, the inactive interval is identified as the period of time in which no rates
are provided for a given product (e.g. the months in which no customer bought
this product). The low activity interval is defined as the time periods when only
a few rates are provided (lower than a given threshold), and the rest of the
time is the high activity interval. In our evaluation we analyzed the monthly
rating distribution in a time frame of one year. Depending on the application
domain, different time frames have to be used for deriving the filter configuration.
For example, a time frame of a week has to be used when deriving the filter
configuration for TV programs recommendation. In this case, the precision of
the active/inactive time intervals must be defined in terms of day plus hour.

In rich product offers, where many items get very similar recommendation
scores, the attenuation produced by the a parameter may completely eliminate
related items from the recommendation list. In these cases, the filter configura-
tion can be reduced to a step function, which allows items to be recommended
only in high season.

Collaborative Filtering. The time filtering technique can be used to im-
prove the recommendations of each type of recommender, being it CB, CF or
KB. For our experimental evaluation we chose to use the Resnick’s CF algorithm,
because it has better prediction accuracy than the CB solutions, is independent
from the availability of domain knowledge and necessitate lower implementation
costs maintenance than the KB Recommenders. The algorithm uses Pearson’s
correlation to compute the similarity between users and to identify the user
neighborhood:

Zi Tui * Twg (3)

2 2
i Tui *

STMyy =
i Tvi

Afterwards, the recommendation scores are computed using the following weighed
sum:

1 X
sCoTey; = N * E STy * Toi, (4)
v=1

Where:

— SiMy, is the similarity between user u and user v

— Twui, To; are the ratings of user u, respectively v for item ¢
— scorey; is the computed utility of item 4 for user u

— N is the number of members of user neighborhood

4 Evaluation
4.1 Evaluation Methods

M-Fold Cross-Validation. The effectiveness of recommendation algorithms is
usually measured through the Recall metric, which measures the ratio of items

Gordea S., Zanker M.: Time Filtering vor Better Recommendations with Small and Sparse Rating Matrices. In: B. Benatallah et al. (Eds.):
8th International Conference on Web Information Systems Engineering, Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

gOMTimes

Time

... for each user

Fig. 3. M fold Cross validation. All but 2 simulation

correctly suggested by recommenders from the total number of items rated by
users as good items. The evaluation is typically performed off-line by separating
the data set in two parts, one set containing rates used for model building (train-
ing or learning set) and a second set of rates used for model validation (test or
validation set). The size and the content of these two sets is given by the type
of the simulation and evaluation strategy. The All but N simulation type (also
known as leave N out) uses a validation set of N ratings, the rest of the ratings
being used in the training set.

In the case of M Fold Cross Validation method, the N items of the learning
set are randomly selected. Therefore, the simulation results are indeterministic
and the recommendation performance is measured over M simulation repetitions.
This process is sketched in Fig 3, where R; represents the rate of the current user
for the item ¢, and the marked items (i.e. R3, Rg) compose the randomly selected
validation set. The overall prediction accuracy is computed as the average recall
over all simulations of each user.

. Window size = 6 .
: M=5 EN=1 Time
Window size =7

M+1=6 i N=1 Time

#ratings - M
... For each user

Fig. 4. Varying window experimentation. All but 2 simulation

Varying Window Ezxperimentation. The main inconvenience of cross val-
idation method is the fact that it completely ignores time dependencies when
selecting the training set and computing the recommendation lists. The list of
recommendations is built by using all information found in the system at ex-
perimentation time (i.e. this is different from the rating time). Therefore, in the
recommendation list may come items that had no rates, or even items that were
not available in the system at the moment in time when the user evaluated a
given product.

In order to overcome these problems and to make a more correct evaluation
of the recommender systems we introduce the varying window experimentation
method, which is time aware. The ratings (R;) are ordered by their timestamp,

Gordea S., Zanker M.: Time Filtering vor Better Recommendations with Small and Sparse Rating Matrices. In: B. Benatallah et al. (Eds.):
8th International Conference on Web Information Systems Engineering, Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

and the training set is selected by reconstructing the application context at rating
time (see Figure 4). If we consider the case of an initial window size of 6 in an
All but 1 simulation, the first 5 rates (in the chronological order) will compose
the learning set and the next one the test set. The rest of the ratings are ignored
in the first iteration. In the next run the window size will be incremented by
including the next rate into the training set, and replacing it with a new one
in the validation set. This step is repeated until the window size will reach the
number of user’s rates. The same simulation process is executed for each system
user. In this kind of experimentation, the recommendation lists are built as the
system would have computed them at the rate time (i.e. the moment in time
when the user has rated the each individual object).

4.2 Evaluation Context

For the experimental evaluation we used two commercial data-sets from domains
with strong time dependencies. KMPortal? is a knowledge management tool used
as knowledge exchange platform by different partners involved in an European
research project in public administration domain. The interaction logs of this
system show a high interest of users for the newest information available in the
system, therefore we use this data-set for evaluating the Time Decay Filtering
algorithm. The system contains 424 information objects introduced into the
system during a period of time of two years, starting with the end of 2004.
There are 3524 document access logs registered into the system for 89 users.
Many users prove to be inactive users, only 30 of them have accessed more than
5 different information objects. The 5 users that are members of the project
management group have a very different behavior than the regular users and
they were not taken in account in the experimental evaluation.

The second data-set contains binary ratings representing transaction data
from consumer services domain. This second data-set is used for evaluating the
Time Window Algorithm. It contains the user-system interaction logs registered
over a period of 3 years (starting with January 2004). 3853 users bought 18825
items from a list of 1387 product alternatives, and more than 2000 users have
bought at least 5 distinct products in this time interval.

4.3 Experimental Results

Using the data-sets described in the previous subsection we implemented two
experiments in which we are looking forward for answering the following ques-
tions:

— How good is the recommendation accuracy of CF algorithms used in com-
mercial applications with less user system interaction?

— Do the time filtering solutions improve effectiveness of recommenders em-
ployed in those systems?

2 see www.kmportal.net

Gordea S., Zanker M.: Time Filtering vor Better Recommendations with Small and Sparse Rating Matrices. In: B. Benatallah et al. (Eds.):
8th International Conference on Web Information Systems Engineering, Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

10

— Is there a significant difference between the experimental results measured
with cross validation method and the ones computed with time aware eval-
uation method?

M| CFe, | CFou CFT Dy
Aging Unit| - | - - 20 | 30 | 60
ABN 1 [3] 020 | 0.64 |0.470.52[0.47
ABN1 [4] 023 | 035 |0.50]0.47|0.50
ABN1 |5| 033 | 0.66 |0.35]0.670.42
ABN1 [6| 027 | 0.27 |0.30]0.45|0.30
AVG 0.258 | 0.480 [0.4050.527]0.422

Table 1. Time decay filtering recommendation performance (Recall).

We used All but 1 simulations for measuring the prediction accuracy of
the three variants of collaborative filtering recommenders: Resnicks’s algorithm
(CF), Time Decay Filtering (CFTD) and Time Window Filtering (CFTW) algo-
rithms. The results are presented in Table 1 and Table 2, where cv and vw indices
denote the evaluation method: cross-validation or varying window. The M para-
meter sets the minimum number of ratings used for model learning (i.e. the size
of the training set). For the varying window evaluation method, M+1 represents
the initial size of the ratings selection window (see Figure 4). The CF,,, exper-
iment reported an average recall of about 45-48%, which was improved by the
time filtering techniques to ~53%, while cross validations simulations indicated
poor prediction accuracy of ~ 25%, and ~ 17% respectively, for the second data

set.
M| CFe | CFyw CFTWyw
« - - - 0 0.5 | 0.8 1
ABN 1|4 | 0.17 | 0.556 |0.564|0.597/0.599|0.610
ABN 1|6 | 0.18 | 0.496 |0.510/0.535|0.583|0.524
ABN 1| 7| 0.15 | 0.431 |0.478/0.511|0.528/0.498
ABN 1/9| 0.19 | 0.419 |0.481|0.497|0.509|0.491
AVG 0.172 | 0.473]0.508]0.535[0.554/0.530

Table 2. Time window filtering recommendation performance (Recall).

In order to find the best filter configuration we performed a variation of the
filter parameters. For the Time Decay Filter, we found that the ideal value of the
Aging Unit lays between 30 and 45 days. Using a value outside this interval affects
seriously the performance of the filter. For this data set, it reduces the overall
performance of the recommender below the one of the classic CF Algorithm.
For the Time Window Filter, the best results were obtained with a value of
the a parameter set to 0.8. The special situations, & = 1 and a = 0 transform
the window filter into a step function. This doesn’t change the recommendation
score provided by CB/CF algorithms, but stops items to be recommended in the
inactive interval, and inactive + low activity interval, respectively. Even these
simple filters were able to improve the recommendation score with 5 to 10 %.

Discussion. Using the cross validation method to evaluate the recommenders
in domains with strong time dependencies can lead to false conclusions as shown
in the experimental results. The cross validation results lay far away from the

Gordea S., Zanker M.: Time Filtering vor Better Recommendations with Small and Sparse Rating Matrices. In: B. Benatallah et al. (Eds.):
8th International Conference on Web Information Systems Engineering, Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

11

values computed with time aware evaluation methods on both data sets. Given
the relative small number of users available in the KMPortal dataset, the ex-
periment results have a higher variance than in the case of Consumer Services
data-set. The time decay and time window filtering algorithms proved to bring
an improvement of 10 and 17% respectively, over the classic CF algorithm. Any-
way, if the filters are bad configured, they can negatively affect the quality of
the recommendations (see Table 1).

In the results of the Time Window filtering experiment (Table 2), it is inter-
esting to notice a slightly negative correlation between the size of the training
set (M) and the recall metric. This may suggest a degradation of the classifica-
tion model that can be explained through changes of user preferences, given the
distance in time between the first and the last ratings. In other words, customers
that buy more services are interested to get a higher product diversification than
the regular users (e.g. heavy customers buy products from 2-3 or more different
categories).

The Time Filtering is used in collaboration with content based and collabora-
tive filtering techniques, which are the core of the recommendation algorithms.
The time filters do not suggest new items, they mainly improve the accuracy
of the recommendations (i.e. Precision metric) by changing the positions of the
items in the recommendation list. Anyway, given the fact that the recommen-
dation lists are truncated in real applications (i.e. only the top 5 or top 10
recommendations are presented to the user), the prediction precision (i.e. Recall
metric) of the algorithms is also improved. In our experimentation we used the
Recall metric, since this is the standard measure for the quality of the recom-
menders.

The experimental evaluation of the time filtering approaches was made indi-
vidually using two different data-sets. At this time we are not in the possession
of a data-set which presents both types of preferences, decayed and periodical.
Therefore, we were not able to evaluate how effective the combination of the two
recommendation approaches can be.

5 Conclusions

In this paper we presented the time filtering technology which was proved to
improve the quality of recommendation lists in domains with time dependant
user preferences and time dependant item availability, such as knowledge man-
agement domain and customer services domain, respectively. Both time decay
and time window filters have proved to be effective when used in the right con-
text with the correct configuration. The time aware evaluation method using
varying window simulations reconstructs the application context for computing
the recommendation list. This method is more appropriate to be used for eval-
uating the effectiveness of recommenders in time dependant domains, than the
classic cross validation method. As future work we plan to build more personal-
ized time filters by incorporating more information from user profile into filter
configuration. For example, the age of the client is a relevant factor for selecting
the time period and the destination of their journey. Also we plan to evaluate the
performance of the proposed algorithms with public data-sets (e.g. movielens).

Gordea S., Zanker M.: Time Filtering vor Better Recommendations with Small and Sparse Rating Matrices. In: B. Benatallah et al. (Eds.):
8th International Conference on Web Information Systems Engineering, Nancy, France., 2007 (LNCS, 4831), pp. 273-284.

12

References

1. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction 12(4) (2002) 331-370

2. Adamavicius, G., Tuzhilin, A.: Towards the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6) (2005)

3. Herlocker, J.L., Konstan, J.A., Terveen, L..G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22(1) (2004) 5-53

4. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating con-
textual information in recommender systems using a multidimensional approach.
ACM Transactions on Information Systems 23(1) (2005) 103-145

5. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Recommender systems for large-
scale e-commerce: Scalable neighborhood formation using clustering. In: Interna-
tional Conference on Computer and Information Technology. (2002)

6. Zanker, M., Jessenitschnig, M., Jannach, D., Gordea, S.: Comparing recommenda-
tion strategies in a commercial context. In: IEEE Intelligent Systems. Volume 22.
(2007)

7. Balabanovic, M., Shoham, Y.: Fab: Content-based, collaborative recommendation.
Communications of the ACM 40(3) (1997) 66-72

8. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text
categorization. In: Proceedings of DL-00, 5th ACM Conference on Digital Libraries,
San Antonio, US, ACM Press, New York, US (2000) 195-204

9. Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and
Information Systems 69(2) (2000)

10. Felfernig, A., Gordea, S.: AI Technologies Supporting Effective Development
Processes for Knowledge Based Recommender Applications. In: 17" International
conference on Software Engineering and Knowledge Engineering (SEKE’05), ACM
(2005)

11. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: Grouplens:
Applying collaborative filtering to usenet news. Communications of the ACM 3(40)
(1997) 77-87

12. Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In:
CIKM ’01: Proceedings of the tenth international conference on Information and
knowledge management, New York, NY, USA,; ACM Press (2001) 247-254

13. Melville, P., Mooney, R., Nagarajan, R.: Content-boosted collaborative filtering.
In: Eighteenth national conference on Artificial intelligence, Menlo Park, CA, USA,
American Association for Artificial Intelligence (2001) 187-192

14. Middleton, S.E., Shadbolt, N.R., de Roure, D.C.: Ontological user profiling in
recommender systems. ACM Transactions on Information Systems 22(1) (2004)
54-88

15. Ding, Y., Li, X.: Time weight collaborative filtering. In: 14th ACM international
conference on Information and knowledge management, New York, NY, USA, ACM
Press (2005) 485-492

