

The 18th European Conference on Artificial Intelligence

Proceedings

Workshop on Recommender Systems
Tuesday July 22, 2008

Patras, Greece

Markus Zanker, Alexander Felfernig and Robin Burke (Eds.)

ISBN 978-960-6843-06-8

Conference Organization

Programme Chairs

Markus Zanker
Alexander Felfernig
Robin Burke

Programme Committee

Esma Aimeur
Matthias Bauer
Bettina Berendt
Shlomo Berkovsky
Derek Bridge
Robin Burke
Alexander Felfernig
Gerhard Friedrich
Dietmar Jannach
Markus Jessenitschnig
Joseph Konstan
Christian Kop
Gerhard Leitner
Kevin McCarthy
Bamshad Mobasher
Seung-Taek Park
Sven Radde
Francesco Ricci
John Riedl
Vincent Schickel-Zuber
Lars Schmidt-Thieme
Marius Silaghi
Barry Smyth
Erich Teppan
Hannes Werthner
Cai-Nicolas Ziegler
Markus Zanker

Additional Reviewers

Christoph Herzog
Venkatesh Ramamoorthy
Roussi Roussev

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece

Preface

Recommender Systems (RS) suggest useful and interesting items to users in
order to increase their satisfaction and online conversion rates. They contribute
to the commercial success of many online ventures and are a very active area of
research. The goal of this scientific event is to promote research collaborations
and active discussions in all technical areas related to Recommender Systems.

The ECAI 2008 Workshop on Recommender Systems continues a series of
successful Workshops on Recommendation Systems over the past decade like the
Workshop on Recommender Systems at ECAI 2006 or the Joint Workshop on
Intelligent Techniques for Web Personalization and Recommender Systems in
E-Commerce at AAAI 2007 to name the most recent ones.

We received 15 submissions to this workshop that underwent a double-blind
peer-review process. Each paper was reviewed by at least three members of
the international programme committee. Following the reviewers’ recommenda-
tions 7 papers have been selected for publication as full papers (6 pages), 4 as
short papers (4 pages) and 3 as position statements (2 pages). They represent
contributions in diverse fields such as scalable algorithms and security, social
and interactivity aspects of recommender systems or applications for knowledge
management.

Furthermore, Thomas Roth-Berghofer from DFKI will reveal the magic of
product recommendation in his invited opening talk when addressing the issue
of explanatory capabilities of recommender systems.

Finally, we want to thank the programme committee members, the additional
reviewers and the authors for their fruitful contributions to this workshop and
look forward to interesting talks and discussions in Patras.

Markus Zanker, Alexander Felfernig and Robin Burke

July 2008

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece

Table of Contents

Session 1: Invited talk.

Revealing the Magic of Product Recommendation . 1
Thomas R. Roth-Berghofer

Session 2: Social and Interactivity Aspects of
Recommender Systems.

A Model-Based Customer Inference Engine . 2
Sven Radde, Andreas Kaiser and Burkhard Freitag

Social Ranking: Finding Relevant Content in Web 2.0 8
Valentina Zanardi and Licia Capra

Over- and Underestimation in Different Product Domains 14
Nava Tintarev and Judith Masthoff

Harnessing Facebook for the Evaluation of Recommender Systems
based on Physical Copresence . 20

Alexandre de Spindler, Stefania Leone, Michael Grossniklaus and Moira
Norrie

Session 3: Algorithms and Security.

Collaborative Filtering via Concept Decomposition on the Netflix Dataset 26
Nicholas Ampazis

Filler Items Strategies for Effective Shilling Attacks 31
Sanjog Ray and Ambuj Mahanti

On the Scalability of Graph Kernels Applied to Collaborative
Recommenders . 35

Jérôme Kunegis, Christian Bauckhage, Andreas Lommatzsch and Sahin
Albayrak

Empirical Evaluation of Ranking Trees on the Problem of
Recommending Learning Algorithms . 39

Carla Rebelo, Carlos Soares and Joaquim Pinto da Costa

Session 4: Recommender Systems and Knowledge
Management.

Recommender Systems for Lifelong Learning inclusive scenarios 45
Olga C. Santos and Jesus G. Boticario

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece

Help-Desk Agent Recommendation System Based on Three-Layered
User Profile . 49

YongBin Kang, Arkady Zaslavsky and Shonali Krishnaswamy

ICARE: A Context-Sensitive Expert Recommendation System 53
Helô Petry, Patricia Tedesco, Vaninha Vieira and Ana Carolina Sal-
gado

Session 5: Position statements.

A Discussion on Multi-Criteria Recommendation . 59
Nikos Manouselis

Plug-in recommending for Eclipse users . 61
Sebastian Draxler, Hendrik Sander and Gunnar Stevens

Exploring the Support for Spoken Natural Language Explanations in
Inference Web . 63

Tejaswini Narayanan and Deborah L. McGuinness

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece

Revealing the Magic of Product Recommendation
Thomas R. Roth-Berghofer1

From the user’s point of view recommender systems quite often
have a certain magical quality. Users look for interesting products
or useful information and, often miraculously, get some suggestions
alongside their browsing results. In this scenario, recommender sys-
tems take on a role we usually ascribe to colleagues and friends
who help us choose one product over an other. Their advice may
be based on content—the features of this product seem to have ad-
vantages over the features of that product—or the recommendations
are community-based—others bought this product, too.

On the Web, e-commerce platforms have operationalised the two
approaches quite successfully, with Amazon.com probably being the
best known example for community-based product recommenda-
tions. But where we can ask a human about their advice, on what
they based their recommendation, recommendation systems are not
necessarily able to to give us this information. They do not explain
their reasoning and how they came up with the suggested solution,
although recently considerable research has been undertaken to rem-
edy this situation.

User

Originator

Explainer

Figure 1. Participants in explanation scenario [3]

In this talk I address the problem of designing and implementing
content-based recommender systems with explanation capabilities.
A recommender system (like any knowledge-based system) is em-
bedded in the following general explanation scenario [3] comprising
three participants (see Figure 1): originator, user, and explainer.

The originator is the problem solving agent, e.g., a recommender
engine. It provides something to be explained, for example a list of
recommendations.

1 Knowledge Management Department, German Research Center for Ar-
tificial Intelligence DFKI GmbH, 67663 Kaiserslautern, Germany, and
Knowledge-based Systems Group, Department of Computer Science, Uni-
versity of Kaiserslautern, email: thomas.roth-berghofer@dfki.de

The user is the addressee of the explanation, presented by the ex-
plainer, which chooses the form of the explanation and organises a
dialog if needed. In order to provide good explanations, originator
and explainer need to be tightly integrated. Not all of the knowl-
edge needed for explaining is available from the originator. Addi-
tional knowledge needs to be acquired for the explainer.

Explanations are strongly associated with trust and transparency.
One trusts a knowledge-based system much more if it is able to ex-
plain what it is doing and, thus, can “prove” its trustworthiness to its
user. Any information system, and even more so any recommender
system, should be able to explain at every point in time why it prefers
solution A over solution B.

Furthermore, it should also clarify the meaning of used concepts,
and where an information item originally came from (“knowledge
provenance”). Explanations are part of human understanding pro-
cesses and part of most dialogues, and, therefore, need to be incorpo-
rated into system interactions in order to improve decision-making
processes.

Case-Based Reasoning (CBR) systems are well suited for building
content-based recommender systems as is demonstrated by their util-
isation in e-commerce scenarios. The case base often is filled from
product catalogues. Modelling and editing the similarity measures
for products is a complex task for the knowledge engineer, who can
be supported by explanations about the structure and content of the
case base. Such support features have been implemented in the open
source CBR tool myCBR2 [4]. I will illustrate myCBR’s explanation
capabilities [1, 2] using an online shop scenario.

REFERENCES
[1] Daniel Bahls, Explanation Support for the Case-Based Reasoning Tool

myCBR, Project thesis, University of Kaiserslautern, 2008.
[2] Thomas Roth-Berghofer, ed. Künstliche Intelligenz: Anwendungen

im Semantischen Web (Integriertes Seminar). Technische Universität
Kaiserslautern, Juli 2004.

[3] Thomas R. Roth-Berghofer and Michael M. Richter, ‘On explanation’,
Künstliche Intelligenz, 22(2), 5–7, (May 2008).

[4] Armin Stahl and Thomas R. Roth-Berghofer, ‘Rapid prototyping of
CBR applications with the open source tool myCBR’, in Advances in
Case-Based Reasoning, eds., Ralph Bergmann and Klaus-Dieter Althoff.
Springer Verlag, (2008).

2 http://myCBR-project.net

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 1

A Model-Based Customer Inference Engine

Sven Radde and Andreas Kaiser and Burkhard Freitag1

Abstract. In complex and frequently changing product do-
mains, customers need qualified consultation services that al-
low them to make well-informed purchasing decisions with-
out requiring excessive technical knowledge about the prod-
uct domain. In this paper we present an intuitive customer
metamodel with an associated inference engine which can be
integrated into conversational recommender systems to pro-
vide comfortable reasoning about customer needs. The in-
ferred knowledge can be used to manage the recommendation
dialogue and to map non-technical customer statements into
preferences for technical attributes.

1 Introduction

To be able to offer high quality assistance in complex product
domains, recommender systems have to move away from their
usually strictly feature-centric recommendation approaches
towards customer-oriented models. Any good natural sales-
person does not primarily ask technical questions to a cus-
tomer but rather tries to elicit the customer’s needs and ex-
pectations about his/her new product. From there, the sales-
person uses his/her own technical expertise to map these
“soft” statements to technical attributes that are most likely
to satisfy the customer’s needs.

Furthermore, customers expect a quality of recommenda-
tion when shopping online that is comparable to visiting a
store – particularly if the product domain is highly complex
or changes frequently, so that even technically savvy users
would require assistance in their purchasing decisions. Elec-
tronic recommender systems that surpass the common simple
“configurators” in functionality are a necessity to increase ac-
ceptance of online sales in these domains.

The contribution of this paper is an industrial strength cus-
tomer metamodel, coupled with a Bayesian inference engine
which is automatically derived from an instance of the cus-
tomer model. The Bayesian engine allows a recommender sys-
tem to classify its users with respect to different stereotypes,
to assess their needs and, finally, to obtain information about
the most recommendable products by inferring likelihoods for
the different possible technical characteristics of the products-
to-be-sold. Apart from being used to obtain product recom-
mendations, a conversational recommender system can use
the inference engine to decide on a dynamic course of its di-
alogue. The presented customer metamodel was designed in
cooperation with an industry partner, to closely resemble the
natural recomendation procedures in a wide range of imagin-

1 Institute for Information Systems and Software Technology, Uni-
versity of Passau, Germany, email: {radde, kaiser, freitag}@uni-
passau.de

able business domains. When using the metamodel, the math-
ematical complexity is hidden, which enables intuitive model
maintenance by non-programmers, i.e. marketing experts.

In summary, we present: (1) an efficiently maintainable,
industrial strength customer metamodel, (2) an application of
Bayesian networks as an inference engine for reasoning about
customer profiles in recommender systems, (3) a generation-
method to automatically derive the inference engine from an
instance of the metamodel.

The rest of this paper is organized as follows: In section 2
we detail a representative use case before we describe our cus-
tomer metamodel in section 3. We give a detailed description
of the inference engine and its use in a recommender system
in sections 4 and 5. We briefly cover model maintenance in
section 6 and review some related work in section 7, before
concluding with an outlook in section 8.

2 Use Case

Today’s market for new automobiles is characterized by a
huge number of choices, extended by different variants per
vehicle, numerous optional features and special equipment of-
ten available only in packages combined with other extras.
Customers need qualified consultation to match their (often
vague) preferences with these complex product models. How-
ever, when visiting the web sites of major car manufacturers,
we find that these offer so-called “configurators” only, that
completely lack high quality recommendation functionality.

The course of action of “natural” salespersons is notably
different, according to our personal experiences and interviews
with vendors: Initially, the customer is classified into a set of
broad stereotypes, such as “business customer”, “young”, or
“male”. Based on this classification, the vendor determines
the further course of the dialogue. Different stereotypes of
customers likely have different needs and expectations about
their future car and the salesperson tries to assess those
based on his/her experience in the field. Those needs are then
mapped into suggestions for technical features and, conse-
quently, available products. The customer is only asked tech-
nical questions when it is necessary for the recommendation
process. Note that this concentration on soft criteria is the
key difference between a natural sales dialogue and the com-
mon technology-oriented online car configurators.

Apart from its complexity, the product domain changes fre-
quently and often radically. Updates of the product domain
may stem from anything ranging from a temporary marketing
campaign to the introduction of new vehicle variants or even
technical innovations which often require significant adjust-
ments to a recommendation dialogue to accommodate pre-

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 2

Product / Customer Model

Ranking

DB Inference

Engine

Dialogue

Manager

Generation

Relevance

Answers
Preferences

Figure 1. Architecture overview

viously unknown functionality. As an example, imagine the
recent boom of GPS navigation assistants and the currently
emerging approaches to location-based services where sales-
persons have to familiarize themselves with entirely new tech-
nologies, services and even business models. Therefore, main-
tainability of the domain model plays an important role, too.

We are cooperating with a local industry partner to realize
a model-based conversational recommender system for this
use case and similarly structured business domains. In [11],
a dialogue structuring method was presented, into which the
inference engine described here can be embedded. A ranking-
enabled database querying technique was presented in [3]. Fig.
1 illustrates how the approach described here is integrated
with those components to form a complete recommender sys-
tem architecture (cf. section 5 for more detail).

The metamodel structure was designed by interviewing do-
main experts to closely resemble actual sales practice, recom-
mendation processes and product catalog structures. Apart
from being used in our prototypical “car domain”, it was suc-
cessfully instanced for another, similarly structured business
domain in cooperation with a local industry partner. A de-
tailed market study was conducted to supplement the experts’
opinions and to build a solid understanding of the currently
applied recommendation methodologies in that market to en-
able evaluations of our approach and to validate our notions
of the used catalog and customer models. In the further course
of our ongoing project, we will roll-out prototypes that build
upon the metamodel to enable us to do field-tests to judge 1)
the ability of domain experts to model their business domain
and 2) the quality and precision of the produced predictions.

3 Customer Metamodel

The central part of the model is a domain-dependent descrip-
tion of the (prospective) customers. To represent the course
of action shown in section 2, a domain expert defines a num-
ber of “interesting” stereotypes that are deemed relevant for
an initial classification of the customer. Furthermore, a num-
ber of customer needs are defined that are assumed to be the
driving force for the customer choosing certain products (for
the product domain at hand). Finally, the model includes the
technical attributes of the products to be sold, along with
their possible values, as is shown in Fig. 2.

Owing to our usage of Bayesian networks in the inference
engine, stereotypes are assigned a fixed a priori probability as
part of the model. As detailed in section 4, the stereotypes
will be represented as nodes in a Bayesian network modeling
the event that a customer is of that particular stereotype.

To represent the interrelations between stereotypes, needs
and attributes, we introduce influences and matches. These

-name : String

-aPrioriProbability : Double

Stereotype

-name : String

Need
-valueName : String

-description : String

AttributeValue

Influence Match

-name : String

-description : String

-priority : int

Attribute

1

*

**

-positive : Boolean

-weight : Integer

Relationship

**

Figure 2. UML diagram for the customer metamodel

signify what kind of influence the fact that a customer belongs
to a certain stereotype has on the likelihood that a customer
will or will not have a particular need and how likely it is that
a certain attribute value will satisfy the customer’s needs.

Example 1 As a brief and somewhat stripped example in
the “car” domain, a domain expert might define the follow-
ing stereotypes as relevant: “male”, “young (age under 25)”,
“senior (age over 55)” and “business customer”. Assume that
the following needs are considered in this domain: “low price”,
“fast car”, “comfortable car”, “representative car”.

Furthermore, the domain expert defines the influences be-
tween the stereotypes and the needs based on his marketing
and domain knowledge, as shown in Table 1.

Table 1. Positive and negative influences for example 1

positive influences
“male” → “fast car”

“young” → “fast car”
“young” → “low price”
“senior” → “comfortable car”

“business customer” → “comfortable car”
“business customer” → “representative car”

negative influences
“male” → “comfortable car”

“young” → “representative car”
“senior” → “low price”
“senior” → “fast car”

“business customer” → “low price”

Influences from stereotypes to needs have a type (cf. Fig. 2):
A positive influence means that the likelihood that a customer
will have a particular need increases if he or she is classified
as belonging to the corresponding stereotype. In this case, be-
ing classified as not belonging to that particular stereotype
decreases the corresponding likelihood. A negative influence
is to be interpreted the other way round. We also introduce
a numerical weight to be able to assign some measure of “im-
portance” to different relationships.

In our Bayesian engine described later, the relation will be
used to calculate the conditional probability tables for the
nodes that represent customer needs, based on the a priori

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 3

probabilities of the stereotypes (which would be replaced by
evidence once the salesperson begins the dialogue).

Now, to be able to find products that are suitable for a
particular customer, we have to establish another relationship
that maps our knowledge about the customer to the technical
properties of a product as stored in the product database. Our
notion of the interaction between a customer’s needs and the
technical features is that particular values of product features
may help to satisfy the needs of a customer.To this end, we
define positive and negative matches between customer needs
and possible values of product features very much the same
way as the influences between stereotypes and needs (cf. Fig.
2). The underlying assumption is that having certain needs
increases (or decreases) the likelihood that a customer prefers
products with particular technical attributes, which enables
us to retrieve the appropriate products from the catalogue.

Example 2 When looking at the car painting, the need of
“low price” has an influence on the possible values of the at-
tribute “price” (e.g., “up to e 500”, “e 500 to 1.000”, and
“more than e 1.000”): The influence on “up to e 500” is
clearly positive, as it is the cheapest painting available. For the
contrary reason it is negative on the price category “more than
e 1.000”. The middle price category is not influenced by the
need “low price”. The rest remaining unchanged, this means
that the cheapest paint has the highest likelihood of satisfying
the customer’s needs, followed by the middle price paint. The
most expensive paint has the smallest probability.

Furthermore, the need “representative car” has a positive
match with “metallic paint type” and the colors “black” and
“blue”, while it has a negative match with colors like “red”,
“yellow” etc. As an example showing that the relationship does
not necessarily have to be based on purely objective criteria,
consider a positive match between the need “fast car” and the
color “red”.

Apart from eliciting the necessary information from a do-
main expert, it is possible to try to learn this relationship,
e.g., by conducting dedicated marketing research or by ana-
lyzing data from previous successful sales or CRM systems.
Those techniques may also be used to verify and refine an
initial assessment made by a domain expert.

4 Generating the Inference Engine

4.1 Network Structure

To realize the inference engine with these desired properties,
our approach is to represent the user model as a Bayesian
network (cf., e.g., [12]). Some of the properties of Bayesian
networks come particularly handy in our use case:

• Partial knowledge is transparently integrated into the net-
work: In some cases, we do not have explicit information
(= evidence) for, e.g., all the stereotypes that the customer
may belong to. Evidence may easily be provided at any
time to correct or refine the predictions.

• Although the predictions may not be very precise when evi-
dence is scarce, all inquiries about a posteriori probabilities
can be answered any time.

• Introducing evidence for a node has influence on the prob-
ability distributions of that node’s parents. This leads to
refined predictions in other parts of the network as well.

Stereotype

male
Stereotype

young
Stereotype

senior

Stereotype

business

customer

Need

low

price

Need

fast car

Need

comfor-

table car

Need

repre-

sentative

car

price typecolor

0-500 1.000+

501-

999

normal

metallicblack

red blue

yellow

Figure 3. Bayesian network for the car painting (solid edges
denote positive influences/matches, dashed edges denote negative

influences/matches)

As established in section 3, our customer metamodel con-
sists of stereotypes, needs, attributes and relations linking
stereotypes and needs, as well as needs and attributes respec-
tively. Stereotypes and needs will be represented as random
variables (nodes) in our network, with a Boolean value range
{false, true}. Influences and matches will form the edges of
the network.

The Boolean values model the situation that a customer
either belongs to a certain stereotype (resp. has a certain need)
or not. Modeling each stereotype as a separate node which may
be true independently of the others allows a very detailed
classification of the customer in the form of a “composite”
stereotype, e.g., “young female business customer” (based on
the stereotypes introduced in example 1).

Product attributes in our Bayesian network are represented
in a way similar to the representation of needs and stereotypes.
However, attention must be paid to the fact that attributes
generally do not have a Boolean value range. Instead, an at-
tribute may have one of several values (e.g. the painting may
be of several colors), as already detailed in the UML model
(cf. Fig. 2). We chose to represent each possible value of each
feature as a distinct node in our Bayesian network, again with
a value range of true and false. A node in this case therefore
represents the probability distribution that a particular value
of an attribute is useful or desirable for the customer (i.e., the
attribute value matches the needs of the customer).

Combining the model elements given in examples 1 and 2,
a Bayesian network that deals with the car’s paint is given in
Fig. 3. For a complete, real life use case, the number of nodes
at all three “layers” of the graph would grow, with the largest
number of nodes to be expected for the attribute values.

An alternative representation of attributes could have used
one single node per attribute that has all possible attribute
values as its value range (i.e. a node “color” with “blue”,

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 4

“yellow” and “red” as possible values instead of three Boolean
nodes “color::blue” etc.). While at a first look this approach
seems more intuitive, the Boolean modeling captures some
possible situations better than the alternative:

(1) The probabilities that the individual attribute values
meet the needs of the customer are independent of each other.
In particular, the case that two different attribute values are
definitely useful for the customer (i.e. with 100% probability)
could not be modeled with a single node per attribute.

(2) Having individual probabilites per attribute value gives
an automatic normalization of the value range to [0,1]. With a
single node per attribute, the information that one particular
value would be useful with a probability of, e.g., 20% would
not mean much without knowing at least the cardinality of
the value range.

4.2 Conditional Probability Tables

Stereotype nodes will be assigned an a priori probability dis-
tribution (see also Fig. 2), based on CRM information about
the demographic structure of the potential customers.

Definition 1 rn is defined as the random variable corre-
sponding to node n in our Bayesian network. As mentioned
previously, all rn are binary random variables.

To denote the set of all random variables corresponding to
a set N of nodes, we use RN .

Example 3 Using data provided by the company’s CRM sys-
tem, the product manager assigns the following probabilities
for the stereotypes of example 1:

n p(rn = true) p(rn = false)

“male” 0.70 0.30
“young” 0.40 0.60
“senior” 0.20 0.80
“business cust.” 0.25 0.75

We now have to provide a means to derive the conditional
probability tables for nodes that represent needs and attribute
values. To this end, we use a method similar to the “Noisy
Add” technique (cf. [5]), which we now present in more detail.

Definition 2 Let N be the set of nodes in the Bayesian net-
work. An edge is a tuple e = (s, d, t, w) with s ∈ N the source
node, d ∈ N the destination node, t ∈ {pos, neg} the “ type”
and w a positive real number representing the weight.

Note that there are only edges between stereotypes and
needs, and needs and attribute values, respectively, as illus-
trated by the “three-layered” shape of the example network in
Fig. 3.

We define E as the set of all edges in the network. To access
the individual components of a single edge, we use the common
dot-notation, e.g., e.w to denote the weight w of edge e.

The semantics of an edge e = (s, d, t, w) are as follows: If
t = pos, the probability of rd is increased if and only if rs is
true, “weighted” by w. For the case t = neg , the probability
is decreased correspondingly. Intuitively, e.g., for a positive
influence between a stereotype s and a need n, the proba-
bility that the customer feels the need n is increased iff. the
customer belongs to s.

Definition 3 For a node n ∈ N we define the set En of
incoming edges of n by En := {(s, n, t, w) ∈ E} and the set
Pn of parents of n by Pn = {s | (s, n, t, w) ∈ E}.

Definition 4 V (Pn) is defined as a valuation of the random
variables in RPn . We use Vs(Pn) to denote a valuation of a
single random variable rs ∈ RPn .

Using these defined valuations, the conditional probability
P (rn = true | RPn) that n occurs provided that the parent
nodes of n occur is calculated using a weighted average of the
parent random variables. For ease of notation, we first intro-
duce the weighted value of an edge e ∈ E given a valuation
V (Pe.d) as:

wv(e, V (Pe.d)) ={
e.w, iff Vs(Pe.d) = true ∧ e.t = pos
e.w, iff Vs(Pe.d) = false ∧ e.t = neg
0, otherwise

Intuitively, wv(e, V (Pe.d)) returns the weight of the edge e
in two cases: 1) The type of e is pos and re.s is true for the
valuation at hand or 2) the type of e is neg and re.s is false.
In all other cases, wv(e, V (Pe.d)) returns 0.

Now, to calculate the conditional probability distribution
P (rn | V (Pe.d)) of node n for a given valuation wv(e, V (Pe.d))
as a weighted average of the parents, we have to sum up the
weighted values of all edges in En and divide by the sum of
all weights in En:

P (rn = true | RPn)) =

∑
e∈En

wv(e,V (Pn))∑
e∈En

e.w

P (rn = false | RPn)) = 1− P (rn = true | RPn))

This equation enables us to calculate the complete condi-
tional probability table of the random variable rn of node n,
when the calculation is executed for all possible valuations
V (Pn). As an example, we detail the calculation of the con-
ditional probability for node “comfortable car” (cf. Fig. 3):

Example 4 For ease of notation, let n be the need “comfort-
able car” and s1, s2, s3 the stereotypes “male”, “senior” and
“business customer”, respectively.

Using sample weights of 1, 2, and 3, respectively, we get the
following influences for n:
En = {(s1, n, neg , 1), (s2, n, pos, 2), (s3, n, neg , 3)}

We can now calculate the conditional probability distribu-
tion of rn for a given valuation V (RP E

n
), e.g.:

p(rn = true | rs1 = true, rs2 = false, rs3 = true) = 0+0+3
6

= 0.5
p(rn = false | . . .) = 1− p(rn = true | . . .) = 0.5

Intuitively, this means that a customer who is characterized
as a “male business customer that is not a senior” has a 50%
probability of feeling the need for a comfortable car. Table 2
shows the complete conditional probability table for all possible
valuations (i.e. all possible customers).

Given the a priori probability distributions of the stereotype
nodes, an initial assessment of the needs that the “stereotyp-
ical” customer will or will not have can be done. When con-
ducting an actual recommendation process with a customer,
a recommender system would now assign evidence to any or
all of the stereotypes nodes based on its initial assessment of
the customer to obtain a personalized needs profile. Natu-
rally, it is possible to re-state this evidence later or, instead
of providing evidence, to just modify the a priori probability
distribution if a more fine-grained assessment is desired.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 5

Table 2. Conditional prob. for the need “comfortable car”

s1 s2 s3 p(n = true | . . .) p(n = false | . . .)
t t t (0 + 2 + 3)/6 1/6
t t f (0 + 2 + 0)/6 4/6
t f t (0 + 0 + 3)/6 3/6
t f f (0 + 0 + 0)/6 1
f t t (1 + 2 + 3)/6 0
f t f (1 + 2 + 0)/6 3/6
f f t (1 + 0 + 3)/6 2/6
f f f (1 + 0 + 0)/6 5/6

5 Using the Inferred Knowledge

In [3] an approach to rank items based on weight-annotated
boolean conditions has been presented which was imple-
mented as an extension of the standard SQL syntax allowing
for a ranked result retrieval in databases. In this case, the
calculated likelihoods can be directly used as weights defining
the desired ranking, thereby balancing all of the customer’s
preferences against each other. When seen as an application of
Multi-Attribute Utility Theory (MAUT) [13], this approach
defines a utility function and profits from the fact that the
single-attribute evaluations are not done on the attributes
themselves but rather on the conditions, implying a normal-
ized (i.e. boolean) value range.

As an alternative to utility methods, PreferenceSQL [8]
could be used to query the product database, if the calcu-
lated likelihoods are transformed into suitable terms of its
pareto-optimality based preference algebra.

Apart from creating product recommendations, the pri-
mary task of a conversational recommender system as pre-
sented in [11] is to choose the next question to ask the cus-
tomer in an intelligent manner. Our inference engine allows
to estimate the probability that a customer will have a par-
ticular need n. This probability is interpreted as how relevant
n is to the customer, as the following definition details.

Definition 5 Let p(n) ∈ [0, 1] be the calculated probability
that the current customer has the need n. Then, rel(n) =
2 ∗ |p(n)− 0.5| is the relevance of n to the customer. The
higher the numerical value of rel(n), the more relevant is n
to the customer.

The definition of rel(n) is based on the assumption that a
user will have stronger feelings about a particular need when
we predict either a very high or a very low probability for that
need. The dialogue manager of a recommender system should
make sure to verify these predictions first, before attempting
to clarify any needs that the user may have no clear opinion
about (i.e. those with a predicted probability close to 0.5).
Those needs may be examined later, when the customer has
begun to build up trust in the recommender system.

Should it become necessary that detailed questions about
the customer’s technical preferences are required, it is neces-
sary to define a relevance measure for attributes as well. We
do so in a way similar to needs, taking into account that a
question about an attribute will try to elicit answers about
all possible values at once. The likelihoods that the various
values of an attribute are useful for a customer are combined
into a single relevance indicator.

Definition 6 Given attribute a with dom(a) = {v1, . . . , vn}
and the probabilities p(v1), . . . , p(vn) that value vi matches the
preferences of the customer, we define the relevance of a as

rel(a) =

∑
v∈dom(a)

|p(vi)−0.5|

n/2
.

Intuitively, the “distances” of the probabilities to the “unde-
cided” value of 0.5 for each vi are summed up and divided by
n/2 returning a value in [0, 1]. The higher the numerical value
of rel(a), the more relevant is a to the customer.

Again, as with definition 5, rel(a) is based on the assump-
tion that attributes the customer has a clearly stated opinion
about have a higher importance than those he or she is indif-
ferent about. Consequently, these should be verified first and
also be given a higher influence when computing the product
recommendations than those for which the predicted proba-
bilities are closer to 0.5.

Depending on the way the dialogue manager combines the
relevance information for needs and attributes, using a com-
mon scale for both may be in order. Therefore, we chose to
normalize rel(n) and rel(a) to the interval [0, 1].

6 Model Maintenance

The approach was specifically designed to accommodate fre-
quent model changes as efficiently as possible. Apart from
major revisions of the model, all changes, such as extending
the list of considered stereotypes are rather local modifica-
tions that leave the rest of the model intact. After the model
has been modified to satisfaction, the Bayesian network can
be rebuilt automatically from the model.

Example 5 Regarding the current trend towards “green”
technologies, a product manager decides to include the new
need “environmentally friendly” into the customer model.
First, he or she must decide which of the considered stereo-
types influence this need. Second, the same must be done to
find technical attributes that match this need, e.g., fuel con-
sumption.

Of course, developing friendly user interfaces that efficiently
guide a non tech-savvy domain expert (say, e.g., a market-
ing manager) through the model maintenance process is still
a task to be done. However, the stability of the model and
inference layers allows for a separation of concerns in the de-
velopment process and the model was specifically designed to
allow an intuitive representation of a domain expert’s mar-
keting knowledge. When properly integrated into the exist-
ing business processes of catalogue creation and maintenance,
these tools have the potential for even further optimizations,
as they can be re-used, e.g., for the creation of printed mar-
keting material in a natural way.

7 Related Work

Bayesian networks are used by Ji et al. in [7] to obtain recom-
mendations in the commodities market. In contrast to our ap-
proach, they do not rely on a domain or customer model, but
focus on learning the structure of the network and all proba-
bilities from history data. Based on evidence provided by the
current customer’s purchases, other commodities are recom-
mended depending on their posteriori probabilities. This kind

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 6

of evidence is not available in our application scenario, as the
customer generally will make a single purchase and leave.

Park et al. use Bayesian networks for a very detailed user
representation in [10]. They use an expectation maximization
algorithm to learn the conditional probability tables on their
network. However, the structure of the network itself has been
designed by a domain expert and is intended to remain fixed.
Therefore, their approach requires extensive work when the
underlying model changes.

Ardissono et al. [1, 2] present a personalized recommender
system for configurable products. Their approach involves
preference elicitation techniques that employ reasoning about
customer profiles to tailor the dialogue to a particular cus-
tomer by providing explanations and smartly chosen default
values wherever possible. The customer preferences learned
this way are used as constraints in the configuration prob-
lem at hand to generate the recommended product config-
uration, which might result in empty recommendations (i.e.
the specified constraints are not satisfyable), thus requiring
repair actions. Our approach does not directly take elicited
preferences as constraints but rather uses them as inputs to
ranking-enabled database queries, returning a list of prod-
uct recommendations which is ordered according to the cus-
tomer’s preferences. Giving a pre-sorted list of products in-
stead of a single “optimal” product is intended to improve
the customer’s freemdom of choice. By evaluating the rele-
vance measure, our approach can also suggest personalized
default answers. It does not need to rely on extensive domain
knowledge or a set of business rules as is the case in [1].

An approach similar to the one proposed in this paper is
presented by Jameson et al. [6]. However, their utility estima-
tions (the “value tree”) do not seem to be built on an explicit
model of the currently served customer but rather on an aver-
age user of their system. Hence, the recommendations are not
personalized as strongly as in our approach which allows an
adaption even to atypical customers by setting the appropri-
ate stereotypes. Also, as the value tree is a strictly hierarchical
structure, it cannot capture the fact that a technical attribute
may be influenced by more than a single need. Furthermore,
it is not completely clear how informal statements (i.e., “I
am a law student.”) can be interpreted as relevant knowledge
(i.e. an increased interest in politics) by the system unless
a domain expert models this association directly within the
Bayesian Network.

In [4] Cao and Li develop a recommender system for con-
sumer electronics by using a fuzzy-based approach for the
inference process which involves reasoning about a product’s
features. The approach does not include an explicit customer
model and therefore is limited to reason only about the techni-
cal features of products. Therefore, its potential for a conver-
sational recommender system that aims at complex product
domains appears limited.

A domain model based on dynamic logic programming was
introduced by Leite and Babini in [9]. Both customer and
user model are represented using a massive set of declarative
rules which allows a detailed and powerful specification of the
business domain – possibly even extended by user-supplied
personalized rules. However, the complex formal models ap-
pear difficult to maintain and use even by domain experts, let
alone customers.

8 Conclusion

We presented an application of Bayesian networks as an infer-
ence engine for reasoning about customer profiles in conver-
sational recommender systems, enabling intelligent dialogue-
management and preference-elicitation. The inference engine
is generated from instances of an industry strength customer
metamodel which improves the maintainability of the recom-
mender system in complex and frequently changing product
domains.

Initial evaluation of the approach based on interviews with
domain experts has been quite positive. As a continuation of
our work, a full-scale field test in a real-life application do-
main will be conducted in cooperation with a business part-
ner. Furthermore, although model creation and maintenance
are deliberately easy and supposed to be feasible by domain
experts, we investigate how techniques to learn the Bayesian
network structure from available sales data can be integrated
to refine and verify the experts’ assumptions.

REFERENCES
[1] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jan-

nach, M. Meyer, G. Petrone, R. Schaefer, W. Schuetz, and
M. Zanker, ‘Personalizing online configuration of products
and services’, in Proc. of the 15th European Conference on
Artificial Intelligence (ECAI), (2002).

[2] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach,
G. Petrone, R. Schaefer, and M. Zanker, ‘A framework for the
development of personalized, distributed web-based configu-
ration systems’, AI Magazine, 24, 93–110, (2003).

[3] M. Beck and B. Freitag, ‘Weighted boolean conditions for
ranking’, in Proc. of the ICDE-08 Workshop on Ranking in
Databases (DBRank’08), (2008).

[4] Y. Cao and Y. Li, ‘An intelligent fuzzy-based recommenda-
tion system for consumer electronic products’, Expert Systems
with Applications, 33, 230–240, (2007).

[5] P. Dagum and A. Galper, ‘Additive belief-network models’,
in Proc. of the 9th Annual Conference on Uncertainty in Ar-
tificial Intelligence (UAI), (1993).

[6] A. Jameson, R. Schaefer, J. Simons, and T. Weis, ‘Adaptive
provision of evaluation-oriented information: Tasks and tech-
niques’, in Proc. of the 14th International Joint Conference
on Artificial Intelligence (IJCAI), (1995).

[7] J.Z. Ji, Z.Q. Sha, C.N. Liu, and N. Zhong, ‘Online recommen-
dation based on customer shopping model in e-commerce’, in
Proc. of the 2003 IEEE/WIC International Conference on
Web Intelligence (WI), (2003).

[8] W. Kießling and G. Köstler, ‘Preference SQL – Design, Imple-
mentation, Experiences.’, in Proc. of the 28th International
Conference on Very Large Data Bases (VLDB), (2002).

[9] J. Leite and M. Babini, ‘Dynamic knowledge based user mod-
eling for recommender systems’, in Proc. of the ECAI-06
Workshop on Recommender Systems, (2006).

[10] M.-H. Park, J.-H. Hong, and S.-B. Cho, ‘Location-based rec-
ommendation system using bayesian user’s preference model
in mobile devices’, in Proc. of the 4th International Con-
ference on Ubiquitous Intelligence and Computing (UIC),
(2007).

[11] S. Radde, M. Beck, and B. Freitag, ‘Generating recommenda-
tion dialogues from product models’, in Proc. of the AAAI-07
Workshop on Recommender Systems in E-Commerce, (2007).

[12] S. Russel and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall International Editions, 1995.

[13] D. von Winterfeldt and W. Edwards, Decision Analysis and
Behavioral Research, Cambridge University Press, 1986.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 7

Social Ranking: Finding Relevant Content in Web 2.0
Valentina Zanardi1 and Licia Capra2

Abstract. Social (or folksonomic) tagging has become a very pop-
ular way to describe, categorise, search, discover and navigate con-
tent within Web 2.0 websites. Unlike taxonomies, which overimpose
a hierarchical categorisation of content, folksonomies empower end
users by enabling them to freely create and choose the categories
(in this case, tags) that best describe some content. However, as tags
are informally defined, continually changing, and ungoverned, social
tagging has often been criticised for lowering, rather than increas-
ing, the efficiency of searching, due to the number of synonyms,
homonyms, polysemy, as well as the heterogeneity of users and the
noise they introduce. In this paper, we propose a method to increase
the efficiency of searches within Web 2.0 that is grounded on rec-
ommender system techniques. We measure users’ similarity based
on their past tag activity. We infer tags’ relationships based on their
association to content. We then propose a mechanism to answer a
user’s query that ranks (recommends) content based on the inferred
semantic distance of the query to the tags associated to such con-
tent, weighted by the similarity of the querying user to the users who
created those tags. We evaluate the effectiveness of this mechanism
when performing searches on the CiteULike dataset.

1 INTRODUCTION

The advent of Web 2.0 has transformed users from passive con-
sumers to active producers of content. This has tremendously in-
creased the amount of information that is available to users (from
videos on sites like YouTube and MySpace, to pictures on Flickr, to
music on Last.fm, and so on). This content is no longer categorised
according to pre-defined taxonomies. Rather, a new trend called so-
cial (or folksonomic) tagging has emerged and quickly become the
most popular way to describe, categorise, search, discover and navi-
gate content within Web 2.0 websites.

Unlike taxonomies, which overimpose a hierarchical categorisa-
tion of content, folksonomies empower end users by enabling them
to personally and freely create and choose the categories (in this case,
tags) that best describe a piece of information (a picture, a blog entry,
a video clip, etc.). Tag clouds are then widely used to visualise a set
of related tags that best describe either individual items or the con-
tent of a website as a whole, with the most frequently used tags being
given more importance either in font size or color. Other visualisa-
tion techniques have been studied, in order to give more importance
to tags’ relationships rather than popularity [5, 11]. When users want
to find content, they navigate, via hyperlinks, from a tag to a collec-
tion of items that are associated with that tag.

However, as tags are informally defined, continually changing, and

1 Dept. of Computer Science, University College London, UK, email:
v.zanardi@cs.ucl.ac.uk

2 Dept. of Computer Science, University College London, UK, email:
l.capra@cs.ucl.ac.uk

ungoverned, social tagging has often been criticized for lowering,
rather than increasing, the efficiency of searching [3]. This is due
to the number of synonyms, homonyms, polysemy, as well as the
heterogeneity of users, contexts, and the noise that they introduce.

In order to ‘connect’ users with content that they deem relevant
with respect to their interests, efficient searching techniques have
to be developed for this novel and unique domain. By efficient, we
mean that the searching technique should be both accurate (i.e., the
returned content does satisfy users’ interests), and complete (i.e., if
there is relevant content in the system, this should be found).

In this paper, we propose a technique, called social ranking, that
aims to efficiently find, within a potentially huge dataset, content that
is relevant to a user’s query. In typical Web 2.0 fashion, we assume
such content to have been described with an arbitrary number of tags
and by an arbitrary number of users. We begin with a study of the
key characteristics of a typical Web 2.0 website (Section 2). Based
on these insights, we propose a mechanism to answer a user’s query
that is grounded on traditional recommender system techniques (Sec-
tion 3): we measure users’ similarity based on their past tag activity;
we infer tags’ relationships based on their association to content; fi-
nally, we rank (recommend) content based on the inferred distance
of the query to the tags associated to such content, weighted by the
similarity of the querying user to the users who created those tags.
Preliminary experimental results demonstrate the good accuracy and
coverage of social ranking (Section 4). We position ourselves with
respect to other works in the area in Section 5, before discussing our
plans for the future (Section 6).

2 DATASET ANALYSIS

In order to understand the key characteristics of the target scenario,
and thus develop a query model that is grounded on its peculiarities,
we started with the analysis of a typical Web 2.0 website, that is, Ci-
teULike (http://www.citeulike.org). CiteULike is a social bookmark-
ing website that aims to promote and develop the sharing of scientific
references amongst researchers. Similarly to the cataloging of web
pages within del.icio.us, and of photographs within Flickr, CiteU-
Like enables scientists to organize their libraries with freely chosen
tags which produce a folksonomy of academic interests. CiteULike
runs a daily process which produces a snapshot summary of what ar-
ticles have been posted by whom and with what tags. We downloaded
one such archive in December 2007. The archive contained roughly
28,000 users, who had tagged 820,000 papers overall, using 240,000
distinct tags. A pre-analysis of the archive revealed the presence of
a vast amount of papers and a vast amount of tags bookmarked/used
by one user only. In order to make the dataset more manageable, we
decided to prune it so to remove those papers and tags that had been
bookmarked/used only once over the entire dataset. We were thus left
with roughly 100,000 papers and 55,000 distinct tags (while keeping

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 8

all 28,000 users). We believe that this pruning of the dataset has not
compromised our analysis (and subsequent performance results), as
there is little one can do to improve search efficiency on papers/tags
nobody else knows.

We then analysed the remaining dataset more carefully in terms of
users’ activity, papers’ popularity, and tags’ usage.

Users’ Activity. To begin with, we studied how many papers were
tagged on average by each user in the system. As expected, there
is a huge variance in users’ activity, with roughly 70% of the users
tagging less than 10 papers (low activity), while the remaining 30%
bookmarks between 10 and 50 papers (medium activity), and be-
tween 50 and 200 papers (high activity). Note that even users with
the most intense activity only bookmark a tiny portion of the whole
paper set, thus suggesting a very focused and scoped interest within
the broader scientific community.

We also analysed the size of the vocabulary these users spoke,
that is, how many different tags were ever used by each user. We
found that more than 70% of users only used less than 20 different
tags, another 15% of users used between 20 and 60 tags, and the
remaining used between 60 and 120 different tags. Once again, the
extremely narrow proportion of tags used by each user suggests that
user’s interest is rather scoped in this domain, so that the vocabulary
spoken by each of them is just a tiny proportion of the emerging
folksonomy.

Papers’ Popularity. We studied papers’ relevance next, that is, we
quantified how many users had bookmarked the same paper. The vast
majority of papers (roughly 87%) were tagged by less than 5 users
(low popularity); 12% were tagged between 5 and 15 times (medium
popularity), and the remaining 1% more than 15 times (high popu-
larity). This suggests that there is a small subset of highly popular
papers who have been bookmarked by a significant proportion of the
community, while there is a very long tail of less popular ones.

We also looked at how many different tags were used to describe
each paper. 84% of papers had less than 10 different tags associated
to them (and more than 54% of them with less than 5). The remaining
16% of papers used between 10 and 30 tags. This would suggest, in
accordance with the analysis of users’ activity previosuly done, that
only a small subset of the whole folksonomy is needed to describe
papers (and thus topics) - that is, users and tags are highly clustered
around papers/topics.

Tags’ Usage. Finally, we studied tags’ usage, that is, to what extent
the emerging vocabulary is shared among users. The vast majority of
tags (roughly 70%) were used by less than 20 users, and an addi-
tional 12% by between 20 and 40 users. However, a non negligible
18% were actually shared by more than 40 users. As for papers’ pop-
ularity, there exists a small subset of tags that are very widely used,
and a very long tail of less popular ones.

We also studied how spread was the usage of tags, that is, to how
many different papers was a tag associated. Confirming previous ob-
servations, we found the vast majority of tags (in excess of 70%) to
be used on a tiny proportion of papers (less than 20), another 10% to
be used for between 20 and 40 papers, with the remaining being used
for more than 40 papers. Despite the huge number of tags in use in
the CiteULike folksonomy, tags are thus shared by small communi-
ties of users and highly clustered around papers/topics.

2.1 Insights
Based on the dataset analysis summarised above, the following in-
sights can be drawn.

Clustering of Users: users vary a lot in terms of activity; however,

even the most active users bookmark a tiny proportion of the
whole paper set. This suggests that users have clearly defined in-
terests that map to a small proportion of the whole CiteULike con-
tent. This is confirmed by tags’ usage: each user masters a small
subset of the whole folksonomy, and users sharing part of the folk-
sonomy form small clusters. We formulate the hypothesis that, by
looking at users’ tag activity, users’ similarity can be quantified
and exploited to answer content searches more accurately.

Clustering of Tags: despite the emergence of a rather broad folk-
sonomy, each paper only needed a small set of tags to be de-
scribed. This would suggest that there is a core of shared and
agreed knowledge about tags within the communities who use
them, and these are recurrently used to describe the same papers.
We formulate the hypothesis that, by looking at what tags were as-
sociated to what papers, tags’ similarity (or, rather, ‘relationship’)
can be quantified and exploited to uncover relevant content.

In the next section, we describe how we used these hypothesis to
develop our content search and recommendation technique.

3 SOCIAL RANKING
Let us consider a user u who is interested in finding some content of
interest (in our specific case, papers). In a typical Web 2.0 scenario, u
would submit a query qu which consists of query tags t1, t2, . . . , tn.
The system answering the query would normally rank results accord-
ing to the following two criteria: the higher the number of query
tags associated to the resource, the higher its ranking; and, the higher
the number of users ui who tagged the resource using (some of the)
query tags, the higher its ranking. Intuitively speaking, the first crite-
rion caters for accuracy of the result, the second caters for confidence
in it. The formula used could look like:

R(p) =
∑
ui

(#ti used by ui on p | ti ∈ qu) , (1)

that is, the ranking of paper p is computed as the number of tags ti

that users ui who bookmarked p used and that belonged to the query
set qu.

While this simple technique could work well to find popular con-
tent described with popular tags (i.e., with reference to our previous
analysis, papers that have been tagged more than 10 times using a
small subset of popular tags), the technique would likely fail to ad-
dress queries that look for the very long tail of medium-to-low pop-
ularity content, as a large amount of results would be returned, all
scoring low. Accuracy would not be the only problem: if the user
running the query used tags that also belong to the long tail, chances
are that no content would be found at all, and coverage would then
become a major issue.

To address these problems, we propose social ranking, a technique
inspired by traditional Collaborative Filtering [2]: first, we identify
who are the users with similar interests to the querying user u; ac-
cording to our analysis, such community should be easily identified
by studying users’ tag activity. Content tagged by these users should
be scored higher in a way that is proportional to the quantified simi-
larity. Second, even though tags can be broadly clustered in domains
of knowledge, people tend to use slightly different subsets of them
within each domain (as shown by the low number of tags used by
each individual and on each paper). We thus identify the tags that
are similar (or, rather, related) to the query tags, thus expanding the
query to this enlarged set. We believe, and our evaluation will con-
firm, that users’ similarity improves accuracy of the results, while
tags’ similarity (i.e., query expansion) improves coverage.

2

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 9

Users

Ta
gs

Resource
s

Users

Tags

R
es

ou
rc

es
Ta

gs

U
se

rs

Users

Ta
gs

Tags

Figure 1. Transformation of the dataset

In the reminder of this Section, we illustrate how we compute
users’ similarity (Section 3.1), how we compute tags’ similarity (Sec-
tion 3.2), and how we combine these two techniques together (Sec-
tion 3.3).

3.1 Users’ Similarity

Social tagging typically provides a 3-dimensional relationship be-
tween users, resources and tags (users bookmark resources using a
certain number of tags). Different definitions of users’ similarity can
be derived; here we consider a simple yet effective one: the more tags
two users have used in common, the more similar they are, regard-
less of what resources they used it on. This definition projects our
3-dimensional space onto a 2-dimensional one, throwing away infor-
mation about ‘resources’, and keeping only information about what
tags a users has used and how often (Figure 1, top). While one may
argue that, in so doing, we discard important information, we believe
that, in scenarios where tags are highly clustered around topics, the
information lost is not significant.

We thus describe each user ui with a vector vi where vi[j] counts
the number of times that users ui used tag tj . Given two users ui and
uj , we then quantify users’ similarity sim(ui, uj) as the cosine of
the angle between their vectors:

sim(ui, uj) = cos(vi, vj) =
vi · vj

||vi|| ∗ ||vj ||

Various similarity measures can be used other than the cosine-based
similarity [6]. For example, concordance-based similarity [1] could
be used, so that the more tags two users share, the more similar they
are (regardless of how many times they have used them). However,
we believe tag frequency to be an important piece of information
to determine a user’s interests. Alternatively, Pearson Correlation
(and its variations - e.g., weighted Pearson [19, 6]) could be used;
as shown in [14], different similarity measures perform differently,
both in terms of accuracy and coverage; we chose cosine-based simi-
larity for its constantly good performance, although we plan to study
the impact of other similarity measures in the future.

3.2 Tags’ Similarity

We define tags’ similarity as follows: the more resources have been
tagged with the same pair of tags, the more similar (related) these
tags are, regardless of the users who used them. This definition
projects our 3-dimensional space onto a 2-dimensional one, as shown
in Figure 1, bottom part. Similarly to what we said before, in scenar-
ios where users’ interests are a rather small and consistent subset of

the broader range of topics in the whole website, we believe that the
information thrown away during the projection is not significant.

We thus describe each tag ti with a vector wi where wi[j] counts
the number of times that tag ti was associated to paper pj . Given two
tags ti and tj , we then quantify tags’ similarity sim(ti, tj) as the
cosine of the angle between their vectors:

sim(ti, tj) = cos(wi, wj) =
wi · wj

||wi|| ∗ ||wj ||

3.3 Two-Step Query Model
The query model we propose exploits the two similarity measures
discussed above (on users and on tags) in the following way. When
user u submits a query qu = {t1, t2, . . . , tn} to discover content that
can be described by query tags t1, t2, . . . , tn, two steps take place:

1. Query Expansion: the set of query tags q is expanded so to in-
clude all ti | ti ∈ qu (for which sim(ti, ti) = 1), plus those
tags tn+1, . . . , tn+m that are deemed most similar to the query
tags (for which 0 < sim(ti, tj) ≤ 1, with i ∈ [1, n] and
j ∈ [n +1, n + m]). We call this set q∗. This set is constructed so
that, for each ti ∈ qu, its top k most similar tags are included, in
a fashion similar to the top k Nearest Neighbour (kNN) strategy
in recommender systems. Different choices of k will have an im-
pact on both accuracy and coverage; we will discuss preliminary
results for different values of k in Section 4.

2. Ranking: all resources that have been tagged with at least one tag
from the extended query set are retrieved. Their ranking depends
on a combination of: the relevance of the tags associated to the
paper with respect to the query tags (papers tagged with ti, i ∈
[1, n] should count more than those tagged with tj , j ∈ [n+1, n+
m]); and, the similarity of the taggers with respect to the querying
user u (papers tagged by similar users should be ranked higher, as
these users are more likely to share interests with u than others,
and thus are in a better position to recommend relevant content).

The ranking of a paper p would then be computed as:

R(p) =
∑
ui

 ∑
ti

tj∈q∗

sim(ti, tj)

 ∗ (sim(u, ui) + 1) (2)

where, for each user ui who tagged p,
∑

ti
tj∈q∗

sim(ti, tj) quanti-

fies how relevant the tags ti associated by ui to p are with respect
to the tags tj belonging to expanded query q∗; note that, in the basic
case of formula 1, this simply meant counting how many tags from
q user ui associated to p. Moreover, the relevance is then magnified
(i.e., papers are pushed higher up in the ranking) in a way that is
proportional to user’s similarity sim(u, ui).

We call this approach social ranking as it exploits information
coming from the emergent social network of users and social net-
work of tags to rank content in a way that is meaningful to the query-
ing user. We are now ready to evaluate this approach.

4 EVALUATION
In this section, we present preliminary results of the ongoing evalu-
ation of social ranking. We begin with a brief description of the por-
tion of the dataset we have been experimenting with, together with
a characterization of the properties that are mostly relevant to so-
cial filtering (Section 4.1). We then describe how we have conducted

3

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 10

146978 54481 26263 18509 12715 6464 7295 4792 5832

2024024

0
500000

1000000
1500000
2000000
2500000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Cosine Similarity

Pa
irs

 o
f U

se
rs

Figure 2. Distribution of users’ similarity

4756729

359087
110865 48145 25928 15048 7863 6546 4779 2188

0
1000000
2000000
3000000
4000000
5000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cosine Similarity

Pa
irs

 o
f T

ag
s

Figure 3. Distribution of tags’ similarity

the experiments (Section 4.2), before analysing social ranking per-
formance, both in terms of accuracy and of coverage (Section 4.3).

4.1 The Dataset
Based on the pre-analysis of the CiteULike dataset described in Sec-
tion 2, we have performed a further cut of the dataset, in order to
obtain a small yet meaningful subset to experiment with. In partic-
ular, we have considered only those tags that have been used on at
least 15 different papers, and by at least 20 users. This has left us
with a dataset consisting of roughly 12,000 users, 83,000 papers, and
16,000 tags. Note that the long tail phenomenon still dominates in
the pruned dataset:

Long tail of users’ similarity: as shown in Figure 2, the vast ma-
jority of users’ pairs have very low value of similarity (below 0.1),
while there exists a long tail of higher similarity pairs. This would
suggest users are highly focused (and clustered) around topics,
and thus only a small portion of users are indeed good recom-
menders to each other.

Long tail of tags’ similarity: as shown in Figure 3, each tag is re-
lated to only a small subset of other tags, again suggesting that
only a handful of tags are used (and thus need to be learned) to
describe specific categories of content.

We believe that the results we are going to present in this section
generally hold for datasets that exhibit similar characteristics.

4.2 Simulation Setup
In order to quantify accuracy and coverage of social ranking, we have
been conducting the following experiment. We randomly picked up
a user u, randomly “hid” one of his bookmarked papers p, and then
performed a query q with the tags that u had associated to p. Since p
was bookmarked by u (before we hid it), u is obviously interested in
it, so a recommender system should be able to return p (coverage).
Note that, in our pruned dataset, it was always the case that, even

after hiding u’s bookmark for p, at least another bookmark made by
a user u′ for p existed, as we only kept in the dataset those papers that
had been bookmarked by at least one user; it should thus be possible,
in principle, to locate and return p. Moreover, the highest the position
of p in the ranked list of returned papers, the better the accuracy of
the ranking algorithm.

In all experiments, we compare the output of our social ranking
algorithm (formula 2) with the simple benchmark presented in Sec-
tion 3 (formula 1). Given the high variability of users’ behaviour and
papers’ popularity in the dataset, we have been conducting 6 different
sets of experiments where we varied:

- the level of activity of the querying user, distinguishing heavy tag-
gers HT (users who tagged more than 50 papers), medium taggers
MT (users who tagged between 10 and 50 papers), and low taggers
LT (users who tagged less than 10 papers);

- the level of popularity of the hidden bookmark, distinguishing
popular papers PP (those that had been bookmarked by at least
5 users), and unpopular ones UP (those that had been bookmarked
by less than 5 users).

Our goal is to investigate the impact of these two characteristics
onto the efficiency of the querying model.

4.3 Results
The first set of experiments we conducted aimed to analyse the im-
pact of users’ similarity alone on the ranking of results. We thus com-
pared the basic query model with the advanced query model where
tag expansion had been disabled. For each query, the list of returned
papers is thus the same, but ranked differently. For each user in each
group (heavy/medium/low taggers), three bookmarks where removed
for each paper category (popular/unpopular), and their correspond-
ing tags searched. As the number of users in each group varies, so
does the total number of queries performed (from 2,200 for the small
group of HT/PP, to 14,000 for the much larger group of LT/UP). Ta-
ble 1 summarises the results obtained, in terms of percentage of times
the advanced model does better/same/worse than the basic query
model. We also report the percentage of queries for which the tar-
get paper remained uncovered.

Experiment Better Worse Tied Not Found
HT/PP 25% 28% 30% 17%
HT/UP 49% 12% 15% 24%
MT/PP 25% 15% 42% 18%
MT/UP 42% 13% 9% 36%
LT/PP 26% 13% 45% 16%
LT/UP 39% 13% 8% 40%

Table 1. Impact of Users’ Similarity on the Ranking of Result

In all scenarios but the first one, the advanced query model out-
performs the basic query model, and it does so more dramatically
when considering unpopular papers, where the gap between the two
approaches (the difference between the ‘better’ and ‘worse’ column)
reaches 37%. This result confirms the importance of weighting the
recommendations coming from similar users more, when looking
for less ‘mainstream’ content. The ranking of results is slightly better
(28% against 25%) when using the basic query model in the first sce-
nario instead: when focusing on more mainstream content (i.e., the

4

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 11

-1

-0.5

0

0.5

1

1 501 1001 1501 2001

Number of Queries

R
an

ki
ng

 (A
dv

 v
s

B
as

ic
)

Figure 4. Improvement obtained for unpopular papers

hidden paper has been tagged many times by different users), simple
searches based on exact tag matching work well enough.

In order to quantify the improvement obtained, we have computed
the difference of the ranking at which a paper is found using the ad-
vanced model versus the basic model, normalised by the total number
of results returned (i.e., a tiny difference in the ranking between the
two techniques, for example, position 12 versus position 14, is not re-
ally appreciable by an end user). The higher the positive difference,
the better the performance of the advanced model and viceversa. Fig-
ure 4 illustrates the results for heavy taggers and unpopular papers.
As shown, there is a considerable set of results for which the perfor-
mance of the advanced approach is not simply better than basic (pos-
itive difference), but significantly so (more than 20% of the queries
ran, returned the hidden paper at a position that is between 80% and
20% higher up with the advanced model than it was with the basic
model).

An important observation can be drawn when looking at the col-
umn labeled ‘Not Found’ in Table 1: searching techniques purely
based on the matching of the query tags with those associated to pa-
pers reveal a substantial amount of uncovered resources; this percent-
age is approximately 16-17% for popular papers, and it increases up
to 40% for unpopular ones. Low coverage is an indication that users
bookmark resources differently; in order to uncover resources of in-
terest, query tags must be expanded to include semantically related
ones. We have thus conducted a second set of experiments, using the
full social ranking model against the basic one, when extending each
query tag with the top kNN tags. The goal of these experiemnts is
to quantify the improvement obtained by social ranking on coverage,
and its consequences on accuracy. We have focused on the long tail
of unpopular papers, as this was the most problematic scenario, and
the one where social ranking should bring the most benefits. So far
we have obtained results for the heavy taggers/unpopular papers sce-
nario for k = 5: the items not found are reduced from 24% to 14%;
in cases where both techniques find the hidden paper, social rank-
ing performs better in 40% of the cases, while in 31% it does worse.
These inital results would confirm that it is possible, with simple
techniques, to automatically learn tags’ similarity and use it to boost
coverage, without giving accuracy away. We are running experiments
with higher values of k: preliminary results, obtained on a smaller
set of queries, would indicate that coverage keeps improving up to
k = 20, while higher values begin to have a non-negligible negative
impact on accuracy. This is aligned with the pre-analysis we have
conducted: each paper usually receives 10 tags or less, up to a max-
imum of 30 tags; expanding the query tags to larger sets thus injects
too much noise within results.

5 RELATED WORK

Research in the area of social tagging has proliferated in recent years,
due to the increasing popularity of such systems. Studies have been
conducted both to understand tag usage and evolution (e.g., [22, 4]),
and to learn and exploit their hidden semantics. In [8], a large study of
social tagging on the popular del.icio.us bookmarking system is pre-
sented, aimed at characterizing users’ activity, pages’ popularity, and
tags’ distribution; the knowledge base (in this case, the whole Web)
is so large and dynamic that the authors are quite pessimistic on the
benefits that social bookmarking can bring to web searches. In [7],
the same authors have shown how searches on del.icio.us can be im-
proved if a navigable hierarchical taxonomy of tags is derived from
tag usage, to help users broadening/narrowing the set of tags that best
describe their interests. Our approach takes a different stance, and
rather than offering users an organised tag navigation system, it aims
to transparently improve users’ searches based on emergent tags se-
mantics and query expansion. In [18], tags are related back to a fixed
ontology of concepts, thus exploiting both techniques to enhance in-
formation retrieval capabilities. Differently from this approach, our
goal is to autonomically derive tags’ relationships, which can then
be fitted into an effective query search algorithm, without relying
on a prefixed ontology. In [20], semantics that specifically relate to
places and events are inferred for resources within the Flickr dataset;
their approach is highly tied to location information, and thus not
easily generalizable to other domains. In [24], a probabilistic genera-
tive model is proposed to describe users’ annotation behavior, and to
automatically derive tags emergent semantics; during searches, their
approach is capable of grouping together synonymous tags, while it
calls for user’s intervention when highly ambiguous tags are found.
Very early work, but with similar goals, is presented in [25], where a
simpler technique, based on an analysis of the relationship between
users, tags and resources, is proposed to disambiguate tags. Tag sys-
tems have recently revealed their susceptibility to tag spam, that is,
malicious annotations generated to confuse users. The problem has
been well analysed in [13], where they tried to identify misused tags,
and quantify the extent to what tagging systems are robust against
spam. Robust solutions to tag spamming are still being investigated.

Research has been very active also in relating tag activity to users,
in order to discover their interests and consequently users’ communi-
ties. Work within the Semantic Web domain has tried to classify users
into categories and describe the key features of such categories [15].
More recently, users have been classified according to their explic-
itly stated profile [10], based on a probabilistic model which takes
into account users’s interest to topics [26], and based on their level of
tagging activity and breadth of interests [12]. In [16], users’ common
interests are discovered based on patterns of frequently co-occurrent
tags, using a classical association rule algorithm, which however
does not take into account considerations about user’s activity. All
these works, including our attempt to find similar users, are based
on the observation that real world networks exhibit a so-called com-
munity structure [21]; defining the set of characteristics that would
enable the best fitting and natural clustering of taggers and tags is an
open research question.

In this paper, we have been combining the two research streams
highlighted above (i.e., automatic learning of tag semantics and
users’ interests) in order to improve query searches and ranking.
Other research groups have been conducting research in the same
area. In [23, 17], the integration of tag information within standard
recommender system’s algorithms has been proposed, in order to
give better recommendations to users; although very promising, at

5

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 12

present such works do not take into account the ‘activity’ of users, in
terms of amount of resources being tagged, and number of tags be-
ing used. We believe this information to be crucial to extract users’
interests and thus improve the efficiency of searches. Tag activity
has been combined with a PageRank-like algorithm, in order to im-
prove the ranking mechanism, in situations where resources are not
linked together as in a typical web graph structure [9]; their approach,
called FolkRank, provides good results when querying the folkson-
omy for topically related elements, while it is easily subverted if less
related/popular tags are being used, due to the size and sparsity of
folksonomies on the web. In this work, we have tried to ameliorate
the sparsity problem in folksonomy; further improvements could be
achieved by clustering users within better scoped communities; we
intend to explore this aspect next.

6 FUTURE DIRECTIONS

In this paper we have presented social ranking, a technique that
aims to improve content searches in Web 2.0 scenarios, by exploiting
users’ similarity and tags’ similarity. The former is used to gain con-
fidence in the relevance of the retrieved content: the higher the sim-
ilarity between the querying user and the user that has bookmarked
it, the higher the chances that the paper is of relevance, thus reduc-
ing the amount of uninteresting content being presented to users. The
latter is used to tackle the problem of heterogeneity, sparsity and lack
of structure in folksonomy instead: by implicitly learning tags’ sim-
ilarity from their usage, we can increase the amount of relevant yet
unpopular content being uncovered.

Ongoing work spans different directions. First, we are conducting
a variety of experiments to better assess the current ranking model:
we are varying the value of k during query tag expansion, the sim-
ilarity function used to compute both user’ and tags’ similarity, and
we plan to experiment with a different dataset too (namely, Last.fm).
The technique we currently use to populate the user-by-tag matrix,
and the tag-by-resource matrix, is rather simplistic (a basic counter
of how many times a user has used a tagged, and how many times a
tag has been used on a resource). More advanced techniques could be
used, which could then lead to more accurate similarity results: for
example, including time information, to cater for the most frequently
used tags, the most recently used tags, etc.

In terms of model, our plan is to refine the techniques we use to
find both similar users and similar tags. We have started analysing
the impact of a variety of clustering techniques to identify commu-
nities of users; beyond similarity in the tags’ usage, there exist other
parameters of relevance, including level of activity (to distinguish ac-
tive users who contribute to the knowledge base, from passive con-
sumers), variety of tags used (unpopular tags may reveal more about
a user’s interests than popular ones), and so on. In parallel, we are
studying more refined techniques to learn relationships between tags.
The ultimate goal is to enrich Web 2.0 applications with accurate and
robust techniques to give users what they are really looking for.

REFERENCES
[1] A. Agresti, Analysis of Ordinal Categorical Data, J.Wiley & Sons,

1984.
[2] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, ‘Using Collaborative

Filtering to Weave an Information Tapestry’, Communications of the
ACM, 35, 61–70, (1992).

[3] Scott Golder and Bernardo A. Huberman, ‘Usage patterns of collabora-
tive tagging systems’, Journal of Information Science, 32(2), 198–208,
(2006).

[4] Harry Halpin, Valentin Robu, and Hana Shepherd, ‘The complex dy-
namics of collaborative tagging’, in Proceedings of the 16th Interna-
tional Conference on World Wide Web, pp. 211–220, New York, NY,
USA, (2007). ACM Press.

[5] Y. Hassan-Montero and V.Herrero-Solana, ‘Improving tag-clouds as vi-
sual information retrieval interfaces’, in Intl. Conference on Multidisci-
plinary Information Sciences and Technologies, Merida, Spain, (2006).

[6] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, ‘An Algorith-
mic Framework for Performing Collaborative Filtering’, in Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 230–237, (1999).

[7] Paul Heymann and Hector Garcia-Molina, ‘Collaborative Creation of
Communal Hierarchical Taxonomies in Social Tagging Systems’, Tech-
nical Report 2006-10, Stanford University, (April 2006).

[8] Paul Heymann, Georgia Koutrika, and Hector Garcia-Molina, ‘Can So-
cial Bookmarking Improve Web Search?’, Resource Shelf, (2007).

[9] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme, Information Re-
trieval in Folksonomies: Search and Ranking, 411–426, 2006.

[10] William H. Hsu, Joseph Lancaster, Martin S.R. Paradesi, and Tim
Weninger, ‘Structural Link Analysis from User Profiles and Friends
Networks: A Feature Construction Approach’, (March 2007).

[11] O. Kaser and D. Lemire, ‘Tag-cloud drawing: Algorithms for cloud vi-
sualization, tagging and metadata for social information organizatio’,
in Intl. Conference on the World Wide Web, Alberta, Canada, (2007).

[12] Shreeharsh Kelkar, Ajita John, and Doree Seligmann, ‘An Activity-
based Perspective of Collaborative Tagging’, (March 2007).

[13] G. Koutrika, F. A. Effendi, Z. Gyöngyi, P. Heymann, and H. Garcia-
Molina, ‘Combating spam in tagging systems’, in Proc.of the 3rd Intl.
Workshop on Adversarial Information Retrieval on the Web, pp. 57–64,
New York, NY, USA, (2007).

[14] N. Lathia, S. Hailes, and L. Capra, ‘The effect of correlation coeffi-
cients on communities of recommenders’, in Proceedings of 23rd An-
nual ACM Symposium on Applied Computing, (2008).

[15] K. Faith Lawrence and M. C. Schraefel, ‘Bringing Communities to the
Semantic Web and the Semantic Web to Communities’, in Proceedings
of the 15th International Conference on World Wide Web, (2006).

[16] X. Li, L. Guo, and Y. E. Zhao, ‘Tag-based Social Interest Discovery’,
in Proc. of the 17th Intl. World Wide Web Conference, (2008).

[17] Reyn Nakamoto, Shinsuke Nakajima, Jun Miyazaki, and Shunsuke Ue-
mura, ‘Tag-based Contextual Collaborative Filtering’, in 18th IEICE
Data Engineering Workshop, (2007).

[18] Alexandre Passant, ‘Using Ontologies to Strengthen Folksonomies and
Enrich Information Retrieval in Weblogs’, in Proceedings of Interna-
tional Conference on Weblogs and Social Media, (2007).

[19] H. Polat and W. Du, ‘Privacy-Preserving Collaborative Filtering us-
ing Randomized Perturbation Techniques’, in The Third IEEE In-
ternational Conference on Data Mining (ICDM’03), Melbourne, FL,
(November 2003).

[20] T. Rattenbury, N. Good, and M. Naaman, ‘Towards automatic extrac-
tion of event and place semantics from flickr tags’, in Proc.of the 30th
ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 103–110, New York, NY, USA, (2007).

[21] Jianhua Ruan and Weixiong Zhang, ‘Identifying network communities
with a high resolution’, Physical Review E (Statistical, Nonlinear, and
Soft Matter Physics), 77(1), (2008).

[22] S. Sen, S. K. Lam, Al M. Rashid, D. Cosley, D. Frankowski, J. Oster-
house, M. F. Harper, and J. Riedl, ‘tagging, communities, vocabulary,
evolution’, in Proc.of the 20th Conference on Computer Supported Co-
operative Work, pp. 181–190, New York, NY, USA, (2006).

[23] Karen H. L. Tso-Sutter, Leandro Balby Marinho, and Lars Schmidt-
Thieme, ‘Tag-aware Recommender Systems by Fusion of Collaborative
Filtering Algorithms’, in Proceedings of 23rd Annual ACM Symposium
on Applied Computing, pp. 16–20. ACM Press, (2008).

[24] X. Wu, L. Zhang, and Y. Yu, ‘Exploring social annotations for the se-
mantic web’, in Proc. of the 15th Intl. Conference on World Wide Web,
pp. 417–426, New York, NY, USA, (2006).

[25] C. Man Au Yeung, N. Gibbins, and N. Shadbolt, ‘Mutual Contextual-
ization in Tripartite Graphs of Folksonomies’, in Proc. of the 6th Intl.
Semantic Web Conference and 2nd Asian Semantic Web Conference
(ISWC/ASWC2007), Busan, South Korea, volume 4825 of LNCS, pp.
960–964, (2007).

[26] D. Zhou, E. Manavoglu, J. Li, L. C. Giles, and H. Zha, ‘Probabilistic
models for discovering e-communities’, in Proc. of the 15th Intl. Con-
ference on World Wide Web, pp. 173–182, New York, NY, USA, (2006).

6

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 13

Over- and underestimation in different product domains
Nava Tintarev and Judith Masthoff 1

Abstract. This paper investigates the effects of over and underesti-
mation on the perceived Effectiveness (helpfulness) of recommender
systems. We consider four different product along two dimensions,
degree of objectivity and investment. Overestimation was considered
more severely than underestimation with regard to perceived Effec-
tiveness. Overestimation was also considered more severely in high
investment domains compared to low investment domains. In addi-
tion, we surveyed the effect of different gaps between initial (initial
impression) and final ratings (true estimate). We found that for gaps
which remained in the negative half of the scale were considered less
Effective than gaps which crossed over from good to bad (or from
bad to good), and gaps which remained in the positive half of the
scale.

1 INTRODUCTION
Explanations of products play an important role in improving the
user experience in recommender systems [10, 14, 15]. Among other
things, good explanations could help users find what they want and/or
persuade them to try or purchase a recommended product. Previous
recommender systems with explanation facilities have been evalu-
ated in a number of ways, reviewed and discussed in [19].

In this paper, we expand on the criterion of Effectiveness, or how
helpful additional information is with regard to aiding users in mak-
ing decisions about products. In this section, we define Effectiveness
in more detail, describe different types of information skews that may
occur in recommendations, and different product domains. In Section
2 we describe our experiment. We conclude with a summary of our
results and discuss implications for related research in Section 4.

1.1 Effectiveness
In this paper, we consider the metric of Effectiveness, or decision
support, with regard to recommendation information. Good decision
support can in part be quantified by the metric suggested by Bilgic
and Mooney [2]:

1. (Rating1) The user rates the product on the basis of the explana-
tion

2. The user tries the product
3. (Rating2) The user re-rates the product

Effectiveness can then be measured by the discrepancy between
Steps 1 and 3 (Rating1-Rating2). According to this metric, an Ef-
fective explanation is one which minimizes the gap between these
two ratings. If an explanation helps users make good decisions, get-
ting more (accurate and balanced) information or trying the product
should not change their valuation of the product greatly.

1 University of Aberdeen, Scotland, U.K., email: n.tintare@abdn.ac.uk

The difference between the two ratings may be positive (overes-
timation of the product) or negative (underestimation). Overestima-
tion may result in false positives; users trying products they do not
end up liking. Particularly in high investment recommendation do-
mains such as holidays, a false positive is likely to result in a large
blow to trust in the system. Underestimation may on the other hand
lead to false negatives; user missing products they might have ap-
preciated. If a user recognizes an underestimation due to previous
knowledge or subsequent exposure, this may lead to a loss of trust
as well. Likewise an underestimation may needlessly decrease an e-
commerce site’s revenue. For example, [16] argued that mispercep-
tions which involve underestimating quality affect long term sales
compared to perfect information, or even overestimation.

Our aim is to broaden the definition of Effectiveness suggested
by [2]. The metric proposed by [2] does not give an indication of
whether over or underestimation is preferable to users, or if this pref-
erence might be a domain dependent factor. As a consequence it also
does not discuss whether skews of the same type, but with different
starting points, are comparable. For example, skews can be repre-
sented in terms of the following three gap types: gaps which remain
in the negative half of a Likert scale, gaps which cross over from
good to bad (or from bad to good), and gaps which remain in the
positive half of a scale.

1.2 Related work
1.2.1 Skews in valuations of recommendations

User valuations of recommended items can be skewed (either over-
or underestimation) by a number of factors. For example if the qual-
ity of the information used to form a recommendation, or if the rec-
ommendation accuracy is otherwise compromised, this is likely to
lead to poor Effectiveness. Likewise, the nature of the recommended
object and presentation of the recommended items are likely to be
contributing factors.

Firstly, the recommendation algorithm may be flawed. Other
times, skewed recommendations are due to insufficient information,
or a bias in data. [4] showed that manipulating a rating prediction
can alter the user’s valuation of a movie to cause either an over- or
underestimation. For example, users rated movies lower than their
initial rating when they saw a lower prediction for the movie, and
vice versa. The study also suggests that users can be influenced to
change their rating of a movie from negative to positive. [4] does not
discuss whether over- or underestimation is considered more severely
by users, but did find that users’ valuations of movies changed more
for lower predictions (underestimation) than for inflated predictions
(overestimation). Also in the movie domain, [13] found that using the
difference between the predicted rating (by similar users) for a given
user and item, and the actual rating of the user for this item, could be
used to increase recommendation accuracy. They considered the sign

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 14

of the error, and used this measure to define a prediction range which
they used to improve recommendation accuracy. On average, errors
based on underestimation were smaller than for overestimation, but
were as such least effective for increasing accuracy.

Secondly, presentational choices for recommendations may skew
a user’s valuation of an item. For example, it has been argued that
order of presentation [6], and the use of images [12] can have a per-
suasive effect on users. [6] found that users click more on highly
ranked links, while [12] found that domain credible images could be
used to increase credibility of websites.

Thirdly, assuming good algorithmic accuracy, additional informa-
tion such as explanations can be used to either aid or hinder decision
support. An explanation may contain both positive and negative in-
formation, and in that sense may have a polarity in a similar way to
numerical ratings of a product. Modifying the polarity of an expla-
nation is likely to lead to a similar skew to the one found by [4]. For
example, in the study by Herlocker et al [5] participants were most
likely to see a movie if they saw an explanation interface consist-
ing of a bar chart of how similar users had rated the movie. This bar
chart had one bar for “good”, a second for “ok” and a third for “bad”
ratings. Bilgic and Mooney [2] later showed that using this type of
histogram causes users to overestimate their valuation for items when
the dataset is skewed toward positive ratings.

Online reviews are another form of additional information and
might sway user valuation of an item. Previous research consider-
ing the properties of helpful reviews has found a positive bias in the
movie domain [18] as well as for cameras and mobile phones [7].

In our experiment, we study the effects of over- and underesti-
mation due to additional information such as explanations. However,
since the skew in the valuation of recommendations can be caused by
any of these factors (e.g. limited algorithm, skewed or limited data,
presentation, and additional information) the effects on evaluations
of skews may be relevant to these causes as well.

1.2.2 Domains

In economics, there has been a great deal of debate about classi-
fication of products into different categories. [16] uses the distinc-
tion between experience goods, or goods that consumers learn about
through experience, and “search goods” which they do not need to
learn about through direct experience. Similarly, [3] distinguishes
between sensory products and non-sensory products. We propose an
interpretation of these categories which distinguishes between prod-
ucts which are easy to evaluate objectively and those which com-
monly require an experiential and subjective judgment.

Another common categorization in economics involves investment
or cost. Often this is a complex construct. For example, [11] dis-
cusses perceived price in terms of the dimensions of risk and effort.
This construct of risk includes financial risk but also psychological,
physical, functional and social risk. The construct of effort considers
purchase price, but also time that the purchase takes. [3] also dis-
cuss perceived price in terms of non-monetary effort and degree of
involvement. [8] narrows down the definition of cost to the objective
measure of the purchase price of an item. For simplicity, we will also
use a definition of investment which only considers purchase price.

2 OVER- AND UNDERESTIMATION

In this experiment, we wanted to find out whether users are more
accepting of underestimation or overestimation in general. We also

investigated how the nature of a product domain can mitigate, or con-
versely, exacerbate faulty information.

2.1 Materials
The experiment was conducted using two questionnaires (one for
overestimation and one for underestimation). The questionnaires
considered four domains distributed over the dimensions of invest-
ment (low vs. high) and valuation type (objective vs. subjective) as
shown in Table 1.

We defined investment in terms of price. By this definition cam-
eras and holidays are high investment domains. Relatively to these
domains, light bulbs and movies can be considered low investment
domains.

We considered cameras and light bulbs as objective domains, and
movies and holidays as subjective. Our definition of this dimension
is based on the premise that while some domains are highly subjec-
tive, it is easier to give a quantitative judgment in others. For exam-
ple, users might be able to reach a consensus as to what properties
are important in a camera, and what generally constitutes good qual-
ity, while this might be harder for a movie. It might be easier to de-
fine good image resolution in a camera than define good acting in
a movie. Note also that our choice of definition for this dimension
does not preclude that different product features (such as resolution
and shutter speed, or actors and director) may vary in terms of im-
portance to different users in all four product domains.

Table 1. Choice of domains

Low investment High investment
Objective Light bulb Camera
Subjective Movie Holiday

2.2 Hypotheses
We expect that users will be more lenient toward underestimation,
and consider it more helpful than overestimation in general. This hy-
pothesis is based on the assumption that users would like to save
money, and are wary of persuasion in commercial systems. Users
may prefer being recommended only great items (and miss decent
items) to buying more, and being recommended items that they will
not like.

It also seems probable that users will have higher demands on
accuracy in high investment domains such as movies and holidays.
Likewise, users may respond more leniently to skews in subjective
compared to objective domains as these are harder to gage.

We also consider that it is possible that the strength of an over-
or underestimation may also depend on the starting point on a scale.
Therefore, we also consider the effects of over- and estimations of
the same magnitude, but with different starting points. For example,
what is the effect of underestimation on perceived Effectiveness if
a user’s valuation of an item changes from negative to ok, and how
does this compare to a change from ok to great? A user may consider
an explanation least helpful when it causes them to perform an ac-
tion they would not have performed if they had been given accurate
information, e.g. when it changes their valuation of a product from
good to bad, or from bad to good. Our hypotheses are thus:

• H1: Users will perceive overestimations as less Effective than un-
derestimation.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 15

• H2: Users will perceive skews as less Effective in high investment
domains compared to low investment domains.

• H3: Users will perceive skews as less Effective in objective com-
pared to subjective domains.

• H4: Users will perceive cross-over gaps which cross the line from
good to bad and vice-versa as less Effective compared to other gap
types.

2.3 Participants
Twenty participants (7 female, 12 male, one unknown) were recruited
at the University of Aberdeen. They were all postgraduates or re-
searchers in Computing Science. The average age was 31.95 (range
20-62).

2.4 Design
We used a mixed-design, with product domain as a within subject
factor, and over- vs. underestimation as a between subject factor.
Participants were assigned to one of two conditions. In the first, par-
ticipants were given a questionnaire with overestimation scenarios,
in the second underestimation scenarios.

In the underestimation condition participants saw Paragraph A:

Paragraph A: “Assume you are on a website looking for a particular
product to buy (such as a camera, holiday, light bulb, movie). Based
on the information given, you form an opinion of the product, and
decide not to buy it and to spend the money on something else. Later
you talk to a friend who used the product, and your opinion changes.”

The user decides not to buy a product and spends the money on
something else. This is to ensure that the choice (not to purchase) is
perceived to be irreversible by the participants. Only later do they
discover that the product was not as bad as they first thought.

For overestimation we considered situations in which the user
initially rated the product highly, but then found the true value of the
product lower after buying and trying it. Paragraph A is replaced
with Paragraph B below:

Paragraph B: “Assume you are on a website looking for a
particular product to buy (such as a camera, holiday, light bulb,
movie). Based on the information given, you form an opinion of the
product, and decide to buy it. After using the product, your opinion
changes.”

In both cases participants were asked to consider that they
were viewing a new website for each scenario even for similar
products. All participants considered products in all four product
domains (cameras, light bulbs, movies and holidays) in randomized
order. Each participant was given scenarios in which their valuation
of the product changed by a magnitude of 2 on a scale from 1 (bad)
to 5 (good). We varied the starting point for the initial valuation. The
rating of the product can be either:

1. Positive, i.e. staying on the positive side (3 ↔ 5)
2. Negative, i.e. staying on the negative side (1 ↔ 3)
3. Cross-over, i.e. changing polarity (2 ↔ 4)

The order of the three starting points (positive, negative and cross-
over) was randomized. The orders of the before and after values
were reversed between over- and underestimation, e.g. 3 → 5 (un-
derestimation) became 5 → 3 (overestimation). Given three different

starting points and four product domains, each participant considered
twelve scenarios.

For each of the twelve scenarios, participants rated how helpful
they found the (presumed) information given on the website on a
seven point Likert scale (1 = very bad, 7 = very good): “How do you
rate the information on this website given this experience?”. While
this perceived Effectiveness differs from true Effectiveness, it also
differs from Persuasion. Persuasive information would give the user
an initial impression (either positive or negative), but fails to con-
sider the way the user finally rates the product once they try it. In this
study the final rating is assumed to be known and true. Step 2 of the
proposed metric (see Section 1.1), where the user would normally
receive information about the product, is assumed to be a black box.

2.5 Results
2.5.1 Which is better?

Firstly we inquire if over- or underestimation is considered generally
more helpful by users. Similarly we want to know just how harmful
these skews are considered by users. As can be expected, in Table 2
we see that both over- and underestimation are considered unhelp-
ful. Since it is arguable that the values on a Likert scale may not
be equal in distance, we performed a Mann-Whitney non-parametric
test which rendered a significant result (p < 0.01). Overestimation
is considered to be less Effective than underestimation: H1 is con-
firmed.

Table 2. Perceived helpfulness (on a scale from 1 to 7) for over- and
underestimation

Mean StD
Overestimation 2.59 1.065

Underestimation 3.08 1.212

2.5.2 Does the domain matter?

In Table 3 we offer an overview of perceived helpfulness, for all four
domains.

Table 3. Mean (and Std) of perceived helpfulness (on a scale from 1 to 7)
for the four domains

Underestimation Overestimation
Camera 2.87 (1.252) 2.37 (0.964)

Light bulb 3.15 (1.231) 2.63 (1.066)
Movie 3.30 (1.236) 3.00 (1.145)

Holiday 3.00 (1.145) 2.37 (0.999)

Low vs. High Investment Table 4 summarizes the perceived in-
vestment in low (light bulbs and movies) and high (cameras and hol-
idays) investment domains. The perceived helpfulness was lower for
high investment than for low investment domains (Mann-Whitney
test, p < 0.05). A separate analysis for over- and underestimation
shows a significant effect (Mann-Whitney test, p < 0.05 with Bon-
ferroni correction) for overestimation, but not for underestimation.
We also see that underestimation is considered as less Effective in
high investment compared to low investment domains, but this trend
is not statistically significant. It seems as if users are more sensitive
to skews in high investment domains, but in particular with regard to
overestimation. H2 is confirmed.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 16

Table 4. Mean (and StD) of perceived helpfulness for low vs. high
investment domains

Underestimation Overestimation
High 2.93 (1.191) 2.37 (0.974)
Low 3.23 (1.225) 2.82 (1.112)

Objective vs. Subjective In Table 5 we see that both over and
underestimation are considered less Effective in objective compared
to subjective domains, but the trend is not statistically significant.
This hints that correct estimates may be more important in objective
domains than subjective, regardless of direction of skew. User com-
ments also confirm that some users are more forgiving of misleading
information in subjective domains than objective: “a wrong sugges-
tion about ‘subjective’ evaluations of products (such as for movie or
holidays) should not determine a severe bad judgment of the web-
site.”, “whether I like a movie (or holiday) is very subjective, and I
would not blame my liking a movie less on the quality 1st descrip-
tion”. The effect is however not sufficiently strong, and H3 is not
confirmed.

Table 5. Mean (and StD) of perceived helpfulness for objective vs.
subjective domains

Underestimation Overestimation
Objective 3.00 (1.239) 2.50 (1.017)
Subjective 3.15 (1.191) 2.68 (1.112)

2.5.3 Does the type of gap matter?

Table 6. Mean (and StD) of perceived helpfulness for different gap types

Underestimation Overestimation
Positive 3.90 (0.940) 3.02 (1.084)

Cross-over 3.03 (0.140) 2.68 (0.944)
Negative 2.31 (1.239) 2.05 (0.944)

We hypothesized that gaps which cross over between the positive
and negative ends of the scale (cross-over gaps) are less helpful than
the two other gap types. We found a significant effect of gap type on
perceived Effectiveness in a Kruskal-Wallis test (p < 0.05). How-
ever, in a Mann-Whitney test we found no significant difference be-
tween cross-over gaps and the two other gap types combined. H4 is
not confirmed.

Investigating the difference between gap types further, in Table 6
we see that participants found gaps on the negative end of the scale
(1 ↔ 3) less helpful than gaps on the positive end (3 ↔ 5), and
gaps which cross over between the positive and negative ends of the
scale (2 ↔ 4), for data using both over and underestimation. Cross-
gaps in turn were considered less helpful than positive gaps. Three
Mann-Whitney tests comparing the three gap types pairwise were all
found to be statistically significant (p < 0.05 with Bonferroni cor-
rection). Apparently, negative gaps damage perceived helpfulness the
most out of the three gap types rather than cross-over gaps.

A similar series of Mann-Whitney tests were run for over and
underestimation separately. All tests returned significant results (p
< 0.05, with Bonferroni correction), except for the difference be-
tween positive and cross-over gaps for overestimation. That is, the
difference in perceived Effectiveness between positive and cross-
over gaps for overestimation is negligible.

2.6 Discussion
Our finding of user preference for underestimation compared to over-
estimation is in line with persuasive theory regarding expectancy vi-
olations and attitude change [17]. An audience’s initial expectations
will affect how persuasive they find a message. In a persuasive con-
text, if expectations of what a source will say are disconfirmed, the
message source can be judged to be less biased and more persuasive.
For example, if a political candidate is expected to take a certain posi-
tion with regard to an issue, but ends up advocating another position,
their credibility rises.

Since it is a likely assumption that users expect a commercial rec-
ommender system to overestimate the value of an item, underestima-
tion disconfirms this expectation and might cause users to find a rec-
ommender system less biased and more trustworthy. Two users stated
expectations on an emphasis on high ratings in qualitative comments:
“I would expect the web to present items at their best and sometimes
with some exaggeration.”, “I expect there to be hype about a movie
and to have to read between the lines to form a judgment for myself.”

The effect of gap type was surprising, we also were surprised to
find that negative gaps were considered least helpful, and positive
gaps most helpful, for both over and underestimation. This may re-
flect the way users distribute and assign ratings. The polar ratings of
1’s and 5’s are more uncommon and differently distributed from the
other ratings, i.e. the ‘distance’ between 2 and 3 may be perceived
as smaller than the distance between 2 and 1. So a user is much less
likely to buy an item rated 1 rather than 2. Likewise, the probability
of a user trying an item increases more between 4 and 5 than it does
between 3 and 4. The lack of significant results for overestimation
might be attributed to users’ general expectation of overestimation in
commercial recommender systems.

User comments also revealed some other interesting views on
product categories. Two users left comments where they differentiate
between holidays and the other products:
“Things like ‘Holidays’ matter more compared to goods, because
holiday is a destination could be once in a life time thing.”, “A hol-
iday is an experience of value that cannot be replaced or compen-
sated for, knowledge should be accurate.”. One user found it difficult
to imagine using a recommender system to buy light bulbs: “I can’t
imagine going on to a web site to look for information on a light
bulb!”.

3 Reflections on the experimental setup
When considering the design of our experiment, two criticisms can
be raised. In this section, we discuss what these criticisms are, and
why we decided to perform the experiment in this particular way.

3.1 Why the wording for underestimation differs
In the scenario for overestimation the user changes their value judg-
ment by experiencing the product directly. In contrast, in the under-
estimation scenario, the user changes their value judgment based on
comments from a friend who experienced the product. So, why did
we not let the user “experience” the product directly in the latter case,
as this would have made the conditions more comparable? As the
user did not buy the product, it was hard to devise a plausible story of
how they ended up experiencing it after all. If somebody else bought
it for them as a gift, the user is not likely to regret missing the item,
and thus will not harbor feelings of resentment over poor informa-
tion to the same degree. Experiencing the item by borrowing it from
a friend is not possible for all domains (e.g. holidays).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 17

3.2 Why the experiment is indirect

Instead of participants really experiencing the products, we only told
them about their experience. What participants think they would do
in such a situation may diverge from what they really would do [1].
We were however working on the basis of these assumptions:

• Gap size matters. Participants’ perceived Effectiveness will de-
pend on the size of the discrepancy between their first impression
and their valuation after experiencing the item.

• Gap position matters. The influence of a skew will depend on the
gap’s position. For example, an under-estimation from 1 (first rat-
ing) to 3 (final valuation) may have a different effect than one from
3 to 5. Evidence for this was found in our experiment.

Given these assumptions, for a fair comparison between domains
(H2, H3) we need to control for gap size and position. Practically,
this would mean that participant’s valuations (before and after) need
to similarly distributed for all products. This would be very hard (if
not impossible) to control rigorously. Even making the experiment
a little more realistic, by giving participants particular information
to form a first opinion, and then more information to form a final
valuation, would be hard to control. Attempts in our earlier work to
construct item descriptions with predictable ratings for all partici-
pants failed [9].

For a fair comparison between over- and underestimation (H1),
we also need the gap size and position to be the same 2. Suppose we
knew that people on average like a particular item, and disliked an-
other item. This may be hard to obtain in certain product domains,
or limit us to a small subset of items where people converge on val-
uation. This is also likely to require a separate study to decide on
suitable items. The estimated valuation allows us to know, on aver-
age, the real valuation (and in analysis, we would need to remove
all subjects whose valuation differed from this average). We would
still have to make the explanations such that they induce the right
initial rating (namely the valuation for the liked item in the disliked
item’s case, and the other way around). Given that we also wanted
to study gap types (H4), we would need multiple of these item pairs
plus explanations per domain.

This does not mean that we will not do more direct experiments
in the future. It is just that given the factors we wanted to investigate
here, there were very clear benefits in doing an indirect experiment.

4 Conclusions

H1 is confirmed: overestimation is considered less helpful by users
than underestimation. H2 is partially confirmed: overestimation is
considered less helpful in high investment domains than in low in-
vestment domains. Underestimation in high investment domains is
not considered significantly less helpful, even if there is a trend in
this direction. The lack of significant result may be due to underesti-
mation having a stronger effect on perceived Effectiveness. H3 is not
confirmed, only a trend suggests that some users may be more critical
in objective than subjective domains. H4 is disconfirmed: cross-gaps
are not considered the least helpful by users, negative gaps are, for
both over- and underestimation. For overestimation, positive gaps are
not considered less helpful than cross-over gaps.

As mentioned in Section 1.2.1, recommendations can be skewed
for a variety of reasons. The results of this study would be relevant

2 We consider the gap ’1 to 3‘ to be comparable to the gap ’3 to 1‘ w.r.t. to
position

for algorithmic correction as well as studies comparing different pre-
sentational interfaces. Understanding the role of factors such as gap
type, domain type and over and underestimation will help better con-
trol for these factors when optimizing a recommender system for Ef-
fectiveness.

In light of our results we suggest an enhancement to the Effective-
ness metric proposed by [2] and described in Section 1.1. We propose
fine tuning this measure of Effectiveness by weighting it according
to gap type, over/underestimation and degree of investment.

REFERENCES
[1] Icek Ajzen and Martin Fishbein, ‘Attitude-behavior relations: A theo-

retical analysis and review of empirical research.’, Psychological Bul-
letin, 84(5), 888–918, (1977).

[2] Mustafa Bilgic and Raymond J. Mooney, ‘Explaining recommenda-
tions: Satisfaction vs. promotion’, in Proceedings of the Beyond Per-
sonalization Workshop in association with IUI, pp. 13–18, (2005).

[3] Yooncheong Cho, Il Im, and Jerry Fjermestad Starr Roxanne Hiltz, ‘The
impact of product category on customer dissatisfaction in cyberspace’,
Business Process Managment Journal, 9 (5), 635–651, (2003).

[4] Dan Cosley, Shyong K. Lam, Istvan Albert, Joseph A. Konstan., and
John Riedl, ‘Is seeing believing?: how recommender system interfaces
affect users’ opinions’, in Proceedings of the SIGCHI conference on
Human factors in computing systems, volume 1 of Recommender sys-
tems and social computing, pp. 585–592, (2003).

[5] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl, ‘Explaining
collaborative filtering recommendations’, in Proceedings of the ACM
Conference on Computer Supported Cooperative Work, pp. 241–250,
(2000).

[6] Thorsten Joachims, Laura Granka, and Bing Pan, ‘Accurately interpret-
ing clickthrough data as implicit feedback’, in ACM SIGIR conference
on Research and development in information retrieval, pp. 154–161,
(2005).

[7] S.-M. Kim, P. Pantel, T. Chklovski, and M. Pennacchiotti, ‘Automat-
ically assessing review helpfulness’, in Empirical Methods in Natural
Language Processing (EMNLP), pp. 423–430, (2006).

[8] David N. Laband, ‘An objective measure of search versus experience
goods’, Economic Inquiry, 29 (3), 497–509, (1991).

[9] Judith Masthoff, ‘Group modeling: Selecting a sequence of television
items to suit a group of viewers’, User Modeling and User Adapted
Interaction, 14, 37–85, (2004).

[10] David Mcsherry, ‘Explanation in recommender systems’, Artificial In-
telligence Review, 24(2), 179 – 197, (2005).

[11] Patrick E. Murphy and Ben M. Enis, ‘Classifying products strategi-
cally’, Journal of Marketing, 50, 24–42, (1986).

[12] Hien Nguyen and Judith Masthoff, ‘Using digital images to enhance
the credibility of information’, in Persuasive Technology symposium in
association with the Society for the Study of Artificial Intelligence and
the Simulation of Behaviour (AISB), pp. 1–8, (2008).

[13] John O’Donovan and Barry Smyth, ‘Eliciting trust values from rec-
ommendation errors’, in International Journal of Artificial Intelligence
Tools (IJAIT), (2006).

[14] Pearl Pu and Li Chen, ‘Trust building with explanation interfaces’, in
International conference on Intelligent user interfaces, Recommenda-
tions I, pp. 93–100, (2006).

[15] James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry Smyth,
‘Dynamic critiquing’, in European Conference on Case-Based Reason-
ing (ECCBR), volume 3155 of Lecture Notes in Computer Science, pp.
763–777, (2004).

[16] Carl Shapiro, ‘Optimal pricing of experience goods’, The Bell Journal
of Economics, 14 (2), 497–507, (1983).

[17] James B. Stiff, Persuasive Communication, chapter 5, 94–98, Guilford
Press, 1994.

[18] Nava Tintarev, ‘Explanations of recommendations’, in ACM Recom-
mender Systems, pp. 203–206, (2007).

[19] Nava Tintarev and Judith Masthoff, ‘A survey of explanations in recom-
mender systems’, in WPRSIUI associated with ICDE’07, pp. 801–810,
(2007).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 18

A Example questionnaire - underestimation
Experiment on product information

Age: Gender: M/F (please circle the one that applies)

All data gathered in this study will be treated confidentially, anonymized, and will only be used for the purpose of the re-
search.

Assume you are on a website looking for a particular product to buy (such as a camera, holiday, light bulb, movie). Based on the in-
formation given, you form an opinion of the product, and decide not to buy it and to spend the money on something else. Later you talk to a
friend who used the product, and your opinion changes.

Consider the following scenarios, and indicate how your experience in each case effects your perception of that particular website.
Note: each scenario is about a different website, even for similar products.

Product Your opinion of the prod-
uct based on info on the
website(1 to 5 scale with 1
being really poor and 5 re-
ally good)

Your opinion of the prod-
uct after talking to your
friend (1 to 5 scale with 1
being really poor and 5 re-
ally good)

How do you rate the information on this website given
this experience?

Very unhelpful Very helpful
Camera 3 5 1 2 3 4 5 6 7
Holiday 1 3 1 2 3 4 5 6 7
Light bulb 2 4 1 2 3 4 5 6 7
Movie 1 3 1 2 3 4 5 6 7
Camera 2 4 1 2 3 4 5 6 7
Holiday 3 5 1 2 3 4 5 6 7
Light bulb 1 3 1 2 3 4 5 6 7
Movie 3 5 1 2 3 4 5 6 7
Camera 1 3 1 2 3 4 5 6 7
Holiday 2 4 1 2 3 4 5 6 7
Light bulb 3 5 1 2 3 4 5 6 7
Movie 2 4 1 2 3 4 5 6 7

Would you like to explain your answers? Please do this here:

Thank you for your participation! If you would like to know more about this study, or receive a summary of the results please contact me at
n.tintare@abdn.ac.uk

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 19

Harnessing Facebook for the Evaluation of
Recommender Systems based on Physical Copresence

Alexandre de Spindler and Stefania Leone and Michael Grossniklaus and Moira C. Norrie 1

Abstract. Various mobile social applications have proposed the use
of ad-hoc network connectivity as a means of detecting user encoun-
ters and shared social contexts. These applications range from simple
opportunistic information sharing to techniques for collaborative fil-
tering in mobile settings. However, it can be difficult and costly to
test the underlying assumption that repeated physical copresence can
be used as a measure of user similarity. We have therefore devel-
oped a framework that allows existing online social platforms such
as Facebook to be coupled with simple, standard mobile applications
in order to test such hypotheses. The central idea is to map the physi-
cal copresence of users to connections in virtual social networks and
then exploit the rich support for developing pluggable applications to
measure user similarity within these networks.

1 Introduction

Several mobile social applications have proposed the use of ad-hoc
network connectivity as a basis for detecting user encounters. Physi-
cal copresence provides a means of not only sharing information op-
portunistically between mobile devices, but also determining shared
social contexts which can be an indicator of some kind of similarity
between users. Hence, the communication layer can be used to per-
form some of the filtering of information normally associated with
recommender systems.

Some of these applications focus on copresence at specific events
in order to exchange information closely related to these events,
while others use repeated copresence in public spaces such as rail-
way stations to build user communities and share general information
such as jokes or images. We have taken the idea one step further and
adapted collaborative filtering to mobile settings by using physical
copresence as the basis for measuring user similarity [3].

One of the major challenges in such applications is to validate
the underlying assumption that physical copresence can be used as a
measure of user similarity. While it might seem obvious that copres-
ence at an event such as a music concert can be taken as an indicator
of similar tastes in music, questions arise as to whether this could be
extended to other categories such as books and films. Also should we
consider only events such as concerts as a basis for filtering recom-
mendations, or could we extend it to other types of locations such
as bars, restaurants, work places, public spaces and even transport
systems?

Unfortunately, it is very complex to test such assumptions in real
world settings. Since recommendations are based on chance encoun-
ters, a meaningful experiment would either require the set of loca-
tions or events to be restricted artificially or the recruitment of a vast

1 ETH Zurich, Switzerland, email: despindler@inf.ethz.ch

number of participants. Our goal was to investigate ways in which ex-
isting social networking sites such as Facebook could support such
experiments by using data collected on physical copresence to cre-
ate connections in virtual networks. The rich support for developing
pluggable applications offered by sites such as Facebook could then
be used to measure user similarity within these networks. Similarities
can be measured in terms of ratings of specific items such as films
and travel destinations to less specific personality properties such as
attitudes and priorities in life.

To support such experimentation, we have developed a framework
that bridges physical and virtual social networks by allowing users to
easily connect to other users encountered in the real world through
Facebook. The framework consists of two main components. The
first allows the physical copresence of participants to be tracked in
a transparent and unobtrusive manner. The second component is a
general copresence Facebook application that we developed to en-
able users to view and connect to other users who they encountered
in the real world. Researchers investigating the use of copresence
in recommender systems can then develop their own Facebook ap-
plications to test specific hypotheses about different forms of user
similarity.

In this paper, we present our framework and discuss how it could
be used as an experimental platform for recommender systems that
use physical copresence as a basis for filtering information. We be-
gin in Section 2 with a discussion of related work and background
information. In Section 3, we introduce a sample scenario that exem-
plifies how users interact with our infrastructure. Section 4 discusses
the design of the framework and gives detailed information about the
implementation of the various components involved. Section 5 then
describes how the framework could be used to test specific ways in
which copresence can be used as a measure for user similarity. Con-
cluding remarks are given in Section 6.

2 Related Work

Several projects have investigated ways of detecting physical copres-
ence in mobile environments and the analysis of copresence data as
well as the usefulness of physical copresence for community detec-
tion or information sharing. Different goals of analysing the data col-
lected have been pursued, ranging from identifying contact patterns
as a basis for designing new data forwarding algorithms [17] to the
identification of users [18], community detection [11] and serendipi-
tous matchmaking systems for the benefit of the users [5]. We outline
a few of these projects below to indicate the range of applications that
rely on copresence data.

Freyne et al. [8] propose a system for message delivery in a mo-
bile environment. Collocation is one possible trigger for delivery and

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 20

therefore the system features proximity detection. However, the co-
presence data is not used to identify relationships among users and
therefore the data is removed from the system as soon as it serves its
triggering purpose.

Serendipity [6] is a project conducted at MIT where Bluetooth-
enabled mobile phones were handed out to 100 students who were
asked to carry them around for 9 months. Apart from logging usage
patterns of phone applications, the phone was set to scan its Blue-
tooth environment every 5 minutes and record any other Bluetooth-
enabled devices discovered. A number of similar studies followed, all
pursuing the goal of collecting collocation data in order to recognise
contact patterns [1, 14].

The notion of a familiar stranger denoting unknown people one
frequently meets has been picked up by projects trying to recognise
the familiarity of people based on copresence data [16]. Furthermore,
such data has been used to provide users with an awareness of the
familiarity of people currently in their vicinity, i.e. to recognise a
user’s social situation [15].

Lawrence et al. [12] developed AIDE, a system which recognises
so called copresence communities, groups that are co-located on a
regular basis. As an example application, AIDE uses these commu-
nities to disseminate information which is supposed to be relevant
to all of its members. There have been no attempts to measure the
degree of common interests within a copresence community.

The TRACE [2] project adopted a wizard-of-oz style approach to
try and study the relationship between copresence and user similarity.
Visitors attending a particular event such as a karaoke evening were
handed out business cards indicating a web site address where they
would later be able to view photos and other information about the
event. Users of the web site could also open discussions with other
visitors to the web site and, in this way, the developers of TRACE
were able to connect users who had been copresent and monitor their
interactions. Through this simple experiment, they were able to show
that there was some evidence supporting the assumption that copres-
ence can be an indicator of user similarity. However, the study was
relatively small scale and one issue was the fact that users who inter-
acted via the event-related web site would often shift their commu-
nication to other channels such as regular email at which point the
researchers lost track of their communication.

In our own previous research, we have adapted collaborative filter-
ing (CF) to mobile settings by assuming that the degree of copresence
between users is a measure of similarity [3]. Our algorithm uses con-
nectivity in mobile ad-hoc networks and opportunistic information
sharing to exchange ratings and recommendations among users. The
approach avoids the need for a central server and heavy computation
of user similarity measures. We have also shown that the algorithm is
computationally equivalent to traditional user-based CF algorithms.
However, the quality of the recommendations is dependent on the un-
derlying assumption that user copresence is a good measure of user
similarity.

Our initial efforts to test this assumption were based on question-
naires designed to assess the similarity of people interviewed at dif-
ferent locations of the Edinburgh festivals [4]. Each year in the month
of August, several festivals and large events take place in Edinburgh,
including the Fringe, a book festival, a film festival and a military
tattoo. The festivals therefore cover several categories of events such
as music, drama, dance, comedy, film screenings, book readings and
interviews with artists and authors. We wanted to assess whether co-
presence at particular venues would not only be a good indicator of
similarity of tastes with respect to the category of events held at that
venue, but also whether it could be extended to other categories.

Although the results obtained support the hypothesis that people
who attend the same events tend to share similar tastes and inter-
ests, such questionnaires tend to be basic and lack generality. Since
visitors were interviewed as they entered or left a venue, the num-
ber of questions had to be kept small. Further, due to the nature of
a questionnaire-based interview, the kind of possible similarities is
determined beforehand during the design of the questionnaire and
cannot be further explored interactively after evaluating initial re-
sponses. Finally, such studies were unable to track visitors attending
multiple events, and it was therefore not possible to investigate if and
how the degree of similarity depended on the number of encounters.

Apart from studies based on questionnaires, such a hypotheses
could also be tested by deploying an application to the general public
or developing a simulation of the algorithm. However both of these
approaches also have severe drawbacks. Developing and deploying
such an application may require a high investment and will also be
high risk if there is no prior evidence backing the underlying assump-
tions that copresence is a good indicator of user similarity. It is also
difficult within academia to carry out large-scale experiments due to
the costs involved. Effective simulation models require the integra-
tion of a human behaviour model and not only a model of the system
operation. Although such models exist, it is difficult to find appropri-
ate ones where behaviour can be characterised in terms of taste and
interest and which are computationally not too intensive.

Given the rise in interest in social networking sites such as Face-
book, we decided to investigate ways in which existing online social
platforms could be used to test such hypotheses without having to
implement and deploy full-scale mobile applications to a large num-
ber of users. The main idea is to relate physical copresence of users
to connections in virtual social networks. Currently, social platforms
such as Facebook offer a rich development environment for plug-
gable applications. As a result, applications that allow specific forms
of user similarities within a network to be measured may be eas-
ily developed and deployed. Similarities can be assessed in terms of
preferences related to specific categories of items such as films, mu-
sic or travel destinations or less specific personality properties such
as attitudes and priorities in life.

The mapping between real-world and virtual social networks is not
a completely novel idea. As part of the Cityware project2, a Facebook
application has been developed to notify users about other Facebook
users met in the real world. However, the system is not built on co-
presence detected soley by the mobile devices carried by users but
rather relies on the presence of desktop computers featuring Blue-
tooth connectivity. These nodes perform the scanning of the physical
environment and send the copresence data to a central server. As a
result, the system would require the installation of many such nodes
in order to work on a larger scale. Our aim therefore was to develop a
physical-virtual copresence framework in which the mobile devices
perform the scanning themselves in order to detect copresence.

3 Scenario

Before describing our framework in detail, we first use a simple sce-
nario to explain the general operation of the system and the user’s
view of the application. To participate in our framework, users must
install our application to gather collocation events on their mobile
device and register with our Facebook copresence application.

Before going to work in the morning, a user might start the ap-
plication on their mobile device. If, for example, it is a Bluetooth-

2 http://www.cityware.org.uk

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 21

enabled mobile phone, it then would periodically scan the user’s en-
vironment for other Bluetooth-enabled devices. When the application
discovers other Bluetooth-enabled devices in the vicinity, it stores the
identifiers of these devices locally, together with the current time and,
if available, a representation of the current location.

The user may keep the application running throughout the day so
that it records copresence events on the way to work, at work, during
lunch and in the evening when they meet friends at a bar, restaurant or
movie theatre. All the copresence events gathered throughout the day
are stored persistently and can, therefore, be uploaded to a desktop
or laptop computer when the user arrives back home in the evening.
From this machine, the data is sent to a central server that manages
copresence data from all users. This server also maintains a registry
that maps device identifiers to Facebook user identifiers.

When the user later logs into the Facebook web site, they will be
presented with an overview of all Facebook users that their mobile
device was able to discover during the day by means of the collected
copresence data and the registry mapping. Using our Facebook co-
presence application, they can browse their profiles and connect to
the other users as well as keeping track of where and when they en-
countered somebody. Copresence events can also be displayed on
a geographical map in a similar way to points of interests in geo-
graphical information systems. A web-based interface displays all
locations where a particular user was encountered as well as all users
met within a particular region in space and time.

Once users have established links to other users through the co-
presence application, other Facebook applications can exploit these
copresence networks to measure user similarity. For example, a re-
searcher who wants to test the hypothesis that users who go to the
same bars at the same time like the same films, could develop their
own likeness application for films that uses the copresence data to
check whether there is a correlation between encounters in specific
locations that are known bars with film preferences.

4 Physical-Virtual Copresence Framework

Having presented a scenario from the user’s perspective, we now
describe our framework. The framework consists of the three main
components shown in Figure 1.

A mobile component is used for gathering collocation data. It con-
sists of an application implemented with Java ME3, a widespread
development platform and runtime environment for mobile applica-
tions. The application runs on mobile devices and periodically scans
its physical environment for other mobile devices. When a device is
discovered, its unique identifier is stored along with the time of the
discovery and the location of the scanning device, if that informa-
tion is available. Note that devices do not need to have the scanning
application installed in order to be discoverable. Each detection of
a mobile device constitutes a so-called copresence event. The set of
copresence events is later exported to a file and uploaded to a cen-
tral database that processes and manages copresence events from all
users of the framework.

Various technologies can be used for automated physical copre-
sense detection, such as Bluetooth [6, 1], wireless hotspot subscrip-
tions [9, 13] or radio frequency [10]. For our copresence framework,
we also adopted the approach of using the scanning range of a Blue-
tooth transceiver to detect physical copresence. Nowadays, most mo-
bile phones have the required hardware already built in and are easily
configured to periodically scan their environment as users carry them

3 http://java.sun.com/javame

around. Also, the issue of assigning unique identifiers to mobile users
is easily resolved by relying on the MAC address of the Bluetooth re-
ceiver. Due to the personal nature of mobile devices, in most cases
there exists a one-to-one relationship between the users and their de-
vice. Finally, the scanning of a device’s Bluetooth environment is
simple to implement and, therefore, we do not provide more details
here.

To detect the location, we are currently using GPS, but are also ex-
perimenting with other location technologies such as GSM cell track-
ing and wireless hotspots recognition. An issue that is frequently
raised when using GSM cell identifiers for determining a location
is the fact that the geographic position of GSM cell antennae is not
readily available. There seems to be a growing interest for position
data of GSM cells as well as wireless hotspots such as used by the
Google maps application for the iPhone. Therefore, the number of
available resources supporting this kind of location technique can be
expected to increase. Our application is designed to cope with the
fact that the location tracking module may change in the future. Cur-
rently, the simplest way to track positions from a developer’s point
of view is to use a built-in GPS receiver as it already exists in some
mobile phones. The GPS receiver may also be an external device
connected to the mobile phone using Bluetooth.

A central server is the heart of the system and maintains the data
gathered by the users as well as a registry mapping device identifiers
to virtual social network user identifiers. Users must register their
mobile device with their social platform identifier. This is a require-
ment for other users to be able to recognise a physically encountered
person as the corresponding social platform user. This server appli-
cation is implemented using Java and db4o4 to persistently store the
mapping of social network identifiers to physical device identifiers as
well as all copresence events. Note that the registry mapping device
identifiers to virtual social network user identifiers is also available
to the mobile device which can therefore inform its owner about the
physical copresence of social platform contacts.

The third component is a Facebook application which notifies
Facebook users about other users they have met in the real world
whenever they log into the web site. Based on these notifications,
users can manage their physical encounters within the virtual social
network as we will describe next. This facebook application is imple-
mented using state-of-the-art web technologies such as Java Servlet
technology, XSLT and the Facebook REST [7] API5 for accessing
social platform data.

On the one hand, this application can be used to browse a list of
physically encountered users as shown in Figure 2. The user may
connect to any of those users, i.e. request to build a virtual relation-
ship, or browse their profiles if they are already connected. These
connections form the basis for comparing their taste and interests,
either using profile data or custom Facebook applications as will be
described in the next section. On the other hand, collocation events
can be displayed on a geographical map allowing the users to keep
track of where and when particular users were encountered. The map
can be set to display all users met as depicted in Figure 3, all loca-
tions where a particular user was met or all users met within a given
region in space or time.

5 Use of the Framework
Our framework allows collocation data to be collected by users and
this data to be stored on a central server. We now go on to describe

4 http://www.db4o.com
5 http://developers.facebook.com/documentation.php

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 22

Registry Database

Database- and Web Server Online Networking Platform

Web

Coocurrence Database

HTTP

Web Server

Bluethooth Discovery

Mobile

Sync

Figure 1. Framework Architecture

Figure 2. Overview of users met

how this data can be used to investigate the relationship between
physical copresence and user similarity. For any user, we can build
a graph representing their social network of real-world encounters.
In this graph, users are represented by nodes which are connected
by an edge if they have been in each other’s vicinity. The edges are
weighted with a value indicating the number of times that the users
have been copresent.

In order to validate a hypothesis about user similarity measured
by means of copresence, a relationship between the values of the
edge weights and the actual similarity of the connected users must
be shown to be significant. Having the Facebook identifiers of these
users gives us the possibility of using that platform to validate such
hypotheses. Since all collocation data gathered by our infrastructure
is stored persistently, approaches to assess user similarities can be
designed and applied at any time.

Additionally, our system allows sequences of user encounters to
be analysed. For example, a user might be first met on a bus to a train
station. Then the user could also be present on the train to another
city. In that other city another user might be met repeatedly on the
way from the train station to the office. If such repeated encounters
on a user path are of relevance to a particular mobile social software,
our system can be used to test its proper functioning.

Figure 3. Map showing locations where users were met

The first step of any analysis within our framework consists in de-
ciding on user characteristics determining the similarity. Depending
on the application domain of a particular recommender system, such
characteristics range from standard demographic data such as age,
gender and education to domain-specific user taste and interests. An
important part of this step is consideration about how users provide
their data. The assessment of user characteristics is nothing new to
Facebook and applications measuring user similarities are very pop-
ular. Flixster is a Facebook application with which users rate a pre-
defined set of movies in order to compare their taste with that of
their friends. Likeness is an application allowing users to be com-
pared based on a wide variety of characteristics. Users are presented
ten statements about a topic of their choice, such as top things to do
on a day off or ten reasons to quit a job. They are asked to rank these
statements according to their personal preferences and the resulting

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 23

sequence is used to compare them with those friends that have ranked
the same statements.

As can be seen from these two examples, it is important that users
can give their answers with as little effort as possible. For example,
it is much easier for a user to rate ten movie items individually as
opposed to putting the items in a descending order of preference.
However, if users are asked to rate items using pre-defined rating
values, the given values must cover the whole range of potential an-
swers. If a movie is to be rated using the rating values “I liked” and
“I disliked”, a user cannot choose a suitable value in the case that the
movie has not been watched. Furthermore, a negative opinion may
be the reason why it has not been watched and it is unclear whether
users would choose “I disliked” in this case.

Even though the Facebook platform already offers a wide vari-
ety of applications that measure user similarity, the data generated
by these applications is not publicly available and hence cannot be
used by other applications and frameworks such as ours. Therefore,
a second step consists of developing a Facebook application for mea-
suring user similarity based on the characteristics chosen in the first
step. The idea is that users for whom collocation data is available
install this application. The application can then gather data, either
by accessing the users profile or by letting the user interact with it.
The data gathered is then sent to the central server where it is stored
along with the copresence data and available for analysis.

Our experience has shown that the complexity of developing a
Facebook application is well within the skills of an experienced ap-
plication developer. The developer’s work consists of three tasks.
First, a web application providing the means to assess the user prop-
erties determining the similarity must be developed. Facebook does
not host any of the applications that are developed by external de-
velopers. Thus, the second task consists of deploying the web ap-
plication on a hosted web server. Finally, the application has to be
registered with the Facebook platform. The registration mainly con-
sists of specifying the location of the web server and application. As
a result, the application will appear as part of the Facebook platform
to the user.

As an example, asume we want to test whether there is a correla-
tion between copresence and movie preferences. Therefore, we could
design a questionnaire as shown in Figure 4. The questionnaire con-
tains a list of movies about which users state their opinion. In the
simplest case, such a questionnaire may be implemented as a regu-
lar HTML page using text and form elements. As usual with HTML
forms, a URL must be provided which points to a server-side compo-
nent handling the submission of the response data. In this example,
handling the response simply consists of making the data persistent
so that it can be analysed at evaluation time. This behaviour may be
implemented either in Java or with any web scripting language.

In order to set up such an experiment, a web server is required
where the questionnaire as well as the response handling component
is made accessible. We have been working with Apache Tomcat6, an
application server implementing Java Servlet and JavaServer Pages
technologies. Using Java Servlet technology, the processing of re-
sponse data as outlined in this simple example can be programmed
using few simple lines of code. However, the resulting Servlet may
be extended to also access the user’s Facebook profile and store the
additional data along with the user response. As mentioned before,
Facebook offers a REST-based API that allows the Facebook plat-
form to be accessed via HTTP GET and POST requests. This API
also provides the means to notify the users through a Facebook built-

6 http://tomcat.apache.org/

in news feed, to write messages and invite them to use a particular
application.

Once the characteristics used to measure similarity have been de-
fined and a corresponding Facebook application has been deployed,
actual user data must be gathered. Therefore, the recruitment of users
is an important aspect of conducting an experiment. Apart from the
incentives such as mapping real-world encounters to social network
connections, displaying the location of these encounters and notify-
ing users about the physical proximity of social network contacts, it
is also important to ensure a high frequency of physical encounters.
One possibility of addressing this issue is to leverage the concept
of regional networks already present in Facebook. These networks
could be used in order to recruit users from a restricted geographical
region, effectively increasing the chance of these users being copre-
sent at some time.

Finally, once the data required to prove or disprove the hypothesis
has been gathered, it must be examined for possible correlations be-
tween collocation and user similarity. This can be done by applying
standard statistical tests such as chi square (χ2) or mean-value analy-
sis. As our methodology to prove the existence or lack of correlation
between datasets is based on straightforward statistical analysis, it is
of little interest and lies outside the scope of this paper.

6 Conclusions

A frequent problem associated with mobile social software is the fact
that underlying assumptions may be difficult to test. For example, a
collaborative filtering approach based on opportunistic information
sharing in mobile ad-hoc networks assumes that the number of times
users are co-located correlates with their similarity. Previous projects
have used a range of methods such as questionnaires, wizard-of-oz
style experiments and the deployment of applications to try and val-
idate such hypotheses but each can be severely restricted in terms of
the amount of data collected due to practical considerations.

We have shown how on-line social networking systems such as
Facebook can be coupled with simple, standard mobile applications
to provide a testbed for a variety of mobile social applications by
mapping physical copresence onto connections in virtual social net-
works. Applications can then be developed using the support of the
social networking systems to analyse, for example, the relationship
between physical copresence of users and their similarity in terms
of interest and taste. The simple application development environ-
ment offered by sites such as Facebook allows these applications to
be easily designed and deployed.

Clearly, it is important to attract users to such applications, espe-
cially since it requires them to register their mobile phones. We be-
lieve that this can be done by offering additional functionality such
as a geographical map showing where user encounters took place or
the possibility of notifying users through their mobile device in the
event of other Facebook users being currently in their vicinity.

Altogether, we believe that the association of virtual and real world
social networks provides an important incentive for people to partic-
ipate in registering with our framework. As a consequence, it should
be possible to attract a sufficient number of users in order to conduct
an experiment for validating assumptions underlying a wide variety
of mobile social applications.

We have finished developing the framework presented in this paper
and have integrated it in Facebook. We are currently experimenting
with selected users collecting data, uploading it to the server and us-
ing the Facebook application. The next stage consists of releasing it
to the public and developing further applications allowing user simi-

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 24

Figure 4. Example user similarity assessment

larities to be measured and put into relation with the collocation data
collected.

REFERENCES
[1] A. Chaintreau, P. Hui, C. Diot, R. Gass, and J. Scott. Impact of Human

Mobility on Opportunistic Forwarding Algorithms. IEEE Transactions
on Mobile Computing, 6(6):606–620, 2007.

[2] S. Counts and J. Geraci. Incorporating physical co-presence at events
into digital social networking. In CHI ’05: CHI ’05 extended abstracts
on Human factors in computing systems, pages 1308–1311, New York,
NY, USA, 2005. ACM.

[3] A. de Spindler, M. C. Norrie, and M. Grossniklaus. Collaborative fil-
tering based on opportunistic information sharing in mobile ad-hoc net-
works. In On the Move to Meaningful Internet Systems 2007: CoopIS,
DOA, ODBASE, GADA, and IS, pages 408–416, Berlin / Heidelberg,
Germany, 2007. Springer.

[4] A. de Spindler, M. C. Norrie, and M. Grossniklaus. Recommendation
based on Opportunistic Information Sharing between Tourists. Infor-
mation Technology & Tourism, (to appear).

[5] N. Eagle and A. Pentland. Social Serendipity: Proximity Sensing and
Cueing. Technical Report 580, MIT Media Laboratory, 2004.

[6] N. Eagle and A. Pentland. Social Serendipity: Mobilizing Social Soft-
ware. IEEE Pervasive Computing, 4(2):28–34, 2005.

[7] R. T. Fielding and R. N. Taylor. Principled design of the modern Web
architecture. ACM Trans. Interet Technol., 2(2):115–150, 2002.

[8] J. Freyne, E. Varga, D. Byrne, A. F. Smeaton, B. Smyth, and G. J. F.
Jones. Realising Context-Sensitive Mobile Messaging. In OTM Work-
shops (1), pages 407–416, 2007.

[9] T. Henderson, D. Kotz, and I. Abyzov. The changing usage of a ma-
ture campus-wide wireless network. In MobiCom ’04: Proceedings of
the 10th annual international conference on Mobile computing and net-
working, pages 187–201, New York, NY, USA, 2004. ACM.

[10] L. E. Holmquist, J. Falk, and J. Wigstrm. Supporting group collabo-
ration with interpersonal awareness devices. Personal and Ubiquitous
Computing, 3:13–21, 1999.

[11] P. Hui, E. Yoneki, S. Y. Chan, and J. Crowcroft. Distributed community
detection in delay tolerant networks. In MobiArch ’07: Proceedings
of first ACM/IEEE international workshop on Mobility in the evolving
internet architecture, pages 1–8, New York, NY, USA, 2007. ACM.

[12] J. Lawrence, T. R. Payne, and D. D. Roure. Co-Presence Communi-
ties: Using Pervasive Computing to Support Weak Social Networks.
In WETICE ’06: Proceedings of the 15th IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative En-
terprises, pages 149–156, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[13] M. McNett and G. M. Voelker. Access and mobility of wireless pda
users, 2005.

[14] A. Natarajan, M. Motani, and V. Srinivasan. Understanding Urban In-
teractions from Bluetooth Phone Contact Traces. pages 115–124, 2007.

[15] T. Nicolai, E. Yoneki, N. Behrens, and H. Kenn. Exploring Social Con-
text with the Wireless Rope. In OTM Workshops (1), pages 874–883,
2006.

[16] E. Paulos and E. Goodman. The familiar stranger: anxiety, comfort,
and play in public places. In CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 223–230,
New York, NY, USA, 2004. ACM.

[17] L. Pelusi, A. Passarella, and M. Conti. Opportunistic Networking: Data
Forwarding in Disconnected Mobile Ad Hoc Networks. Communica-
tions Magazine, IEEE, 44(11):134–141, 2006.

[18] J. Perkio, V. Tuulos, M. Hermersdorf, H. Nyholm, J. Salminen, and
H. Tirri. Utilizing Rich Bluetooth Environments for Identity Prediction
and Exploring Social Networks as Techniques for Ubiquitous Com-
puting. In WI ’06: Proceedings of the 2006 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence, pages 137–144, Washington,
DC, USA, 2006. IEEE Computer Society.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 25

Collaborative Filtering via Concept Decomposition on the
Netflix Dataset

Nicholas Ampazis1

Abstract. Collaborative filtering recommender systems make auto-
matic predictions about the interests of a user by collecting informa-
tion from many users (collaborating). Most recommendationalgo-
rithms are based in finding sets of customers or items whose ratings
overlap in order to create a model for inferring future ratings or items
that might be of interest for a particular user. Traditionalcollabora-
tive filtering techniques such as k-Nearest Neighbours and Singular
Value Decomposition (SVD) usually provide good accuracy but are
computationally very expensive. The Netflix Prize is a collaborative
filtering problem whose dataset is much larger than the previously
known benchmark sets and thus traditional methods are stressed to
their limits when challenged with a dataset of that size. In this paper
we present experimental results that show how theconcept decompo-
sition method performs on the movie rating prediction task over the
Netflix dataset and we show that it is able to achieve a well balanced
performance between computational complexity and prediction ac-
curacy.

1 INTRODUCTION

Collaborative filtering (CF) is a subfield of machine learning that
aims at creating algorithms to predict user preferences based on past
user behavior in purchasing or rating of items [15],[18]. CFrec-
ommender systems are very important in e-commerce applications
as they contribute much to enhancing user experience and, conse-
quently, to generating sales and increasing revenue as theyhelp peo-
ple find more easily items that they would like to purchase [19].

In October, 2006 Netflix released a large movie rating dataset and
challenged the data mining, machine learning and computer science
communities to develop systems that could beat the accuracyof their
in-house developed recommendation system (Cinematch) by 10%
[3]. In order to render the clallenge more interesting, the company
will award a Grand Prize of $1M to the first team that will attain this
goal, and in addition, Progress Prizes of $50K will be awarded on the
anniversaries of the Prize to teams that make sufficient accuracy im-
provements. Apart from the financial incentive however, theNetflix
Prize contest is enormously useful for recommender system research
since the released Netflix dataset is by far the largest ratings dataset
ever becoming available to the research community. Most work on
recommender systems outside of companies like Amazon or Netflix
up to now has had to make do with the relatively small 1M ratings
MovieLens data [12] or the 3M ratings EachMovie dataset [11]. Net-
flix provided 100480507 ratings (on a scale from 1 to 5 integral stars)
along with their dates from 480189 randomly-chosen, anonymous
subscribers on 17770 movie titles. The data were collected between

1 Department of Financial and Management Engineering, University of the
Aegean, Greece, email: n.ampazis@fme.aegean.gr

October, 1998 and December, 2005 and reflect the distribution of all
ratings received by Netflix during this period. Netflix withheld over
3M most-recent ratings from those same subscribers over thesame
set of movies as a competition qualifying set and contestants are re-
quired to make predictions for all 3M withheld ratings in thequal-
ifying set. As a performance measure the company has selected the
Root Means Square Error (RMSE) criterion between the actualand
predicted scores. In addition Netflix also identified a ”probe” subset
of the complete training set consisting of about 1.4M ratings as well
as the probe Cinematch RMSE value to permit off-line comparison
with systems before submission on the qualifying set.

In this paper, we present the main components of one of our ap-
proaches to the Netflix Prize based on theconcept decomposition
method [5] and we show that it combines moderate computational
complexity with good prediction accuracy on the RMSE criterion.
However, due to the limits of the paper and our obvious interests,
we intentionally do not publish all details of our method since some
small but important details remain hidden. To this end we only report
results evaluated on the probe subset of the Netflix dataset.

2 COLLABORATIVE FILTERING
RECOMMENDER SYSTEMS

The goal of a CF algorithm is to recommend products to a target
user based on the opinions of other users [6],[8],[14]. In a typical CF
scenario, there is a list ofn usersU = {u1, u2, ..., un} and a list
of m itemsI = {i1, i2, ..., im}. For each userui we have a list of
itemsIui

for which the user has expressed an opinion about. These
opinions can be either explicitly given by the user as a rating score (as
is the case with Netflix) or can be implicitly derived from theuser’s
purchase records. Under this setting we consider a distinguished user
ua ∈ U called theactive user for whom the task of a collaborative
filtering algorithm is to suggest other items that the activeuser might
like. This suggestion can take either of the following two forms:

• Prediction: Provide a numerical value,Pa,j expressing the pre-
dicted likeliness of itemij /∈ Iua for the active userua. The
predicted value should be within the same scale (e.g., from 1to 5)
as the opinion values provided byua in the past.

• Recommendation:Provide a list ofN items,Ir ⊂ I , that the
active user will like the most. Obviously the recommended list
should only contain items not contained inIua , that isIr ∩ Iua =
Φ. This kind of suggestion is also known as Top-N recommenda-
tion.

Most collaborative filtering based recommender systems represent
every user as anm-dimensional vector of items, wherem is the
number of distinct catalog items and every item as ann-dimensional

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 26

vector of distinct users. These representations can also becombined
together to form ann × m user-by-item matrix. Note that usu-
ally the user-by-item matrix is extremely sparse since eachuser has
rated/purchased only a small fraction of the item’s catalogue and
some items may have very few ratings. For example Netflix dataset
is more than 99% sparse since most users have only rated a fraction
of the movies (most users have rated at most 200 movies) [3].

Using this matrix, a variety of methods can be applied for thepre-
diction or the recommendation task. These methods range from user-
to-user [18] (or item-to-item [17]) k-Nearest Neighbours techniques,
to Singular Value Decomposition (SVD) [16] (or more advanced fac-
torizations of the user-by-item matrix [9],[13]) or combinations of
all the above techniques. For example this year’s Progress Prize win-
ners (Bellkor team) have used a blending of 107 different techniques
whose combination corresponds to an 8.43% improvement overthe
Cinematch system [2].

Even though most of the above techniques can provide accu-
rate predictions, they require, however, a computationally expensive
training component. For example in a user-to-user k-Nearest Neigh-
bours setting one may have to pre-compute all the correlations be-
tween users in order to otherwise having to repeat the same calcu-
lations on-the-fly. In addition batch matrix factorizationtechniques
applied to a matrix of the scale of the Netflix user-by-item matrix
may render the computation intractable on non-parallel computing
architectures. Therefore these techniques may not be directly ap-
plicable for dynamic settings and may only be deployed in static
settings where the known preferences do not vary much with time.
However, a number of practical scenarios such as real-time person-
alization require dynamic collaborative filtering that canhandle new
users, items, and ratings entering the system at a rapid rate. In such
situations, it is imperative for the recommender system to dynami-
cally adapt its predictions using the new information, which in turn
requires a fast and efficient training algorithm such as the one that
we describe in the following sections.

3 CLUSTER MODELS

3.1 Overview of clustering methods

In order to find users who are similar to the active user,cluster mod-
els divide the user base into many partitions and treat the task as a
cluster assignment problem. The algorithm’s goal is to assign the user
to the partition containing the most similar customers and then uses
the purchases and ratings of the customers in the cluster to generate
recommendations [21]. The partitions are typically created using an
offline clustering (e.g. k-means [10]) or other unsupervised learning
algorithm (e.g [7]). Once the algorithm generates the clusters it com-
putes the user’s similarity to each cluster and then choosesthe cluster
with the strongest similarity to accordingly assign the user into. Some
algorithms may also assing users into multiple clusters with varying
degrees by determining the strength of each relationship, like ,for
example, Fuzzy c-means clustering [4].

Cluster models have better online scalability and performance than
other collaborative filtering methods because they have to make com-
parisons of the active customer’s vector to only a predefinednum-
ber of cluster vectors. However recommendation quality maybe low
since the sparsity of the dataset may prevent the cluster models to
group together the most similar customers resulting in an incosistent
aggregation of ratings within a cluster [20].

3.2 Our item-clustering approach

Rather than grouping similar users to clusters, our item-clustering
method matches each of the items’ ratings in order to combinesimi-
lar items into a group. The partitioning of the movie base is accom-
plished with theconcept decomposition method which allows us to
assing each item to more than one cluster with a well defined de-
gree of membership. A full desctiption of the method is presented in
section 4.

For the Netflix case the basic idea is to come up with a number
of ”representative” movies, with each one representing a group of
movies with similar characteristics (genres). In this case, each cluster
is really a ”made-up” movie representing a group of movies. The
data for each cluster are just user ratings, one rating valuefor each
distinct user. For each user in every cluster we calculate its average
rating from the movies who both belong to this cluster and have been
rated by this customer, that is we replace the clusters rating for this
user with the average. In this way movies are clustered into genres
(e.g. action, adventure, comedy, science fiction, etc) by the users who
have rated them and we allow each movie to belong with varying
degrees to more than one genre. Therefore the predicted rating that
the active user would give to a movie is a weighted combination of
the average rating that this user usually gives to movies belonging
to each particular genre, where the weights are determined by the
membership of the particular movie in each genre.

Formally, in order to provide an active user’s prediction onan
unseen movie, we aggregate the active user’s ratings from all the
clusters that the unseen movie belongs to, and then we calculate the
weighted average of all the clusters’ predictions. Of course, the pre-
dictions of each cluster is the average prediction of all movies be-
longing to that cluster.

The algorithm can be summarized as follows: To make a predic-
tion for useru on moviem:

• Find thek clusters that are most similar to moviem. Calculate the
membership of the movie to each cluster according to a suitable
similarity metric.

• The predicted ratingPvm for useru on moviem is the weighted
average of the k clusters’ ratings.

Pum =

∑
k

rukwmk∑
k

wmk

(1)

whereruk is the average rating of useru in movie clusterk and
wmk is the membership (weight) of moviem in clusterk.

4 THE CONCEPT DECOMPOSITION METHOD

In this section, we study how to partition the high-dimensional and
sparse movie vectors of the Netflix Dataset into disjoint conceptual
categories (genres) and to determine the membership of eachmovie
to every cluster. Towards this end, we briefly describe the spherical
k-means clustering algorithm and the structure of the clusters it pro-
duces.

4.1 Concept Vectors

Givenm item vectorsx1,x2,...,xm in Rn we denote byπ1,π2,...,πk

their partitioning intok disjoint clusters such that

∪k
j=1πj = {x1, x2, ..., xm} andπj ∩ πl = Φ if j 6= l (2)

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 27

For each fixed1 ≤ j ≤ k, themean vector or thecentroid of the
item vectors contained in the clusterπj is

mj =
1

nj

∑

x∈πj

x (3)

wherenj is the number of items inπj . Since the mean vectormj

may not necessarily have a unit norm we can define the correspond-
ing concept vector as

cj =
mj

‖ mj ‖
(4)

Due to the Cauchy-Schwarz inequality, the concept vectorcj has
the important property that for any unit vectorz in Rn

∑

x∈πj

x
T
z ≤

∑

x∈πj

x
T
cj (5)

Thus, the concept vector may be thought of as the vector that is
closest in cosine similarity (in an average sense) to all theitems vec-
tors in the clusterπj .

4.2 The Spherical k-means algoritm

The concept vectors can be calculated using thespherical k-means
algorithm proposed in [5]. The outline of the algorithm is listed in
Algorithm 1.

Algorithm 1 Spherical k-means

Require: A set ofm data vectorsX = {x1, x2, ..., xm} in Rn and
the number of clustersk

Ensure: Unit-length cluster centroid vectors{c1, c2, ..., ck} are ini-
tialized to some (e.g. random) values
Method:

1: Data assignment:
For eachxi assignxi to πk ⇐ argmaxk[xT

i ck]
2: New centroid estimation:

For each clusterk, recalculatemk = 1

nk

∑
x∈πk

x and let

ck ⇐ mk

‖mk‖

3: if (no xi can be further reassigned) then
4: exit;
5: end if

4.3 Locality and Sparsity of Concept Vectors

Since the Netflix item vectors (movies) are almost 99% sparse, con-
sequently, the concept vectors that are produced by their clustering
are also sparse. This means that at each cluster there is a small num-
ber of customers that contribute to the concept vector’s coordinates.
This observation allows us to associate auser cluster Wj within the
movie clusterpj as in [5] in the following way:

A user1 ≤ w ≤ n is contained inWj , if the value (weight) of that
user incj is larger than the weight of that user in any other concept
vectorcl, 1 ≤ l ≤ k, l 6= j.

These user clusters allow us to idenfity groups of users within a
cluster of movie vectors since most of the weights of a concept movie
vector is concentrated in or localized to the correspondinguser clus-
ter [5].

4.4 Concept decomposition and matrix
factorization

It has been shown in [5] that the spherical k-means clustering algo-
rithm is directly related to matrix factorization in the sense that we
can consider the approximation of each item vector by a linear com-
bination of the concept vectors. This matrix approximationscheme
is known asconcept decomposition.

We define theconcept matrix as an × k matrix such that for1 ≤
j ≤ k, the j-th column of the matrix is the concept vectorcj , that is

Ck = [c1c2...ck] (6)

Assuming that thek concept vectors are linearly independent then
it follows that the concept matrix has rankk.

For any partitioning of the item vectors, we define the correspond-
ing concept decompositioñXk of the user-by-item matrixX as the
least-squares approximation ofX onto the column space of the con-
cept matrixCk. We can write the concept decomposition as an×m
matrix

X̃k = CkZ
∗ (7)

whereZ
∗ is ak×m matrix that can be determined by solving the

following least-squares problem:

Z
∗ = argmin

k
‖ X − CkZ

∗ ‖ (8)

For this problem it is well known that a closed form solution exists
namely,

Z
∗ = (CT

k Ck)−1
C

T
k X (9)

This leads to the following approximation to the original user-by-
item matrix:

X̃k = Ck(CT
k Ck)−1

C
T
k X (10)

The matrixD = C
T
k X is the transpose of matrixXT

Ck which
can be thought of as thek-dimensional representation of the entire
movie collection. In other words, this matrix contains the cosine sim-
ilarities (since vectors are normalized) between the movievectors
and the concept vectors. Hence the elements of the matrixD deter-
mine the degree (membership) by which each movie is associated
with each one of thek clusters. A more careful comparison between
equations (1) and (10) clearly shows thatPum ≃ X̃k(um)

when one
substituteswmk with Dmk and ruk with the average user ratings
provided by the un-normalized version of the concept matrixCk.

5 EVALUATION

The approach was evaluated on the entire Netflix dataset and experi-
ments were run on a 3.4GHz Dual Core Pentium CPU with 3G RAM
running Ubuntu 7.10 desktop x8664 (Gutsy Gibbon) operating sys-
tem. The sphericalk-means clustering of the dataset was generated
from a customized version of thegmeans software package (available
from ”http://www.cs.utexas.edu/users/dml/Software/gmeans.html”)
compiled with the Intel C/C++ Compiler Professional Edition for
Linux. The algorithm converged in 10 iterations with a totalrunning
time of approximately 13.5 minutes.

Tables 1 to 8 show the top 5 movies (determined by their mem-
bership) in 8 representative (out of the 100) clusters produced by
the spherical k-means clustering algorithm on the Netflix movie vec-
tors. It is interesting to note the clear partitioning of thedataset into

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 28

the various genres: Science fiction (Table 1 / Cluster 4), Documen-
taries (Table 2 / Cluster 6), Rock Music (Table 3 / Cluster 11), Rop
Music (Table 4 / Cluster 20), Religious (Table 5 / Cluster 21), Sea-
sonal (Table 6 / Cluster 25), Children’s (Table 7 Cluster 34), and
Crime/Mystery (Table 8 / Cluster 42). The rest of the clusters (which
we cannot present here due to space limitations) also exhibit similar
coherence and reveal more fine-grained partitions between genres as
is the case between Clusters 11 and 20 where they are both about
music DVDs but in cluster 11 we find titles from rock music whereas
in Cluster 20 we find pop music performances.

It is important to stress the fact that the algorithm has produced
these partitions using solely the Netflix provided user ratings with-
out the utilization of any external meta-data information about the
movies (e.g. from IMDB [1]).

The efficiency of the approach on the probe dataset was evaluated
with different combinations of the following parameters:

• C : the total number of clusters.
• k: the number of most similar movie clusters used for prediction.

The best prediction result was obtained with the combination C =
100 andk = 5, yelding an RMSE of0.89151, which represents a
5.89% improvement over Cinematch’s performance (0.9474). The
time required to obtain the probe predictions was 20 secondson the
same computer as above (15 seconds to load the necessary datafiles
of equation (10) and 5 seconds to apply equation (1) over the 1.4M
probe user/movie pairs).

The results were also evaluated on the qualifying set which we
however now hold back for obvious reasons. However, the probe re-
sult itself indicates the efficiency of the proposed technique which
has been shown to combine moderate computational complexity with
good prediction accuracy.

Table 1. Movies in Cluster #4

Star Trek: The Next Generation: Season 5
Star Trek: The Next Generation: Season 6
Star Trek: The Next Generation: Season 7
Star Trek: The Next Generation: Season 4
Star Trek: The Next Generation: Season 3

Table 2. Movies in Cluster #6.

National Geographic: Inside American Power: The Pentagon
National Geographic: The FBI
National Geographic: Inside American Power: The White House
National Geographic: Inside American Power: Air Force One
National Geographic: Ambassador: Inside the Embassy

Table 3. Movies in Cluster #11.

Eric Clapton: One More Car, One More Rider
Eric Clapton & Friends in Concert: The Crossroads Benefit
Eric Clapton: 24 Nights
Eric Clapton Unplugged
Stevie Ray Vaughan and Double Trouble: Live at the El Mocambo1983

Table 4. Movies in Cluster #20.

Madonna: The Immaculate Collection
Madonna: The Girlie Show: Live Down Under
Madonna: The Video Collection 1993-1999
Madonna: Ciao Italia: Live from Italy
Britney Spears: Britney in Hawaii: Live and More

Table 5. Movies in Cluster #21.

Jeremiah: The Bible
Solomon: The Bible
Esther: The Bible
Great People of the Bible: The Apostle Paul
Great People of the Bible: Abraham, Sarah, Isaac, Jacob & Joseph

Table 6. Movies in Cluster #25.

Dr. Seuss’ How the Grinch Stole Christmas
Rudolph the Red-Nosed Reindeer
A Charlie Brown Christmas
It’s the Great Pumpkin, Charlie Brown
It’s a Wonderful Life

Table 7. Movies in Cluster #34.

Sesame Street: Elmo’s World: Springtime Fun
Garfield and Friends: Vol. 4
Sesame Street: Sing Along
Underdog: Nemesis
Popeye 75th Anniversary Collector’s Edition

Table 8. Movies in Cluster #42.

Midsomer Murders: Blue Herrings
Midsomer Murders: The Electric Vendetta
Midsomer Murders: Garden of Death
Midsomer Murders: Dark Autumn
Inspector Morse 18: Who Killed Harry Field?

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 29

6 CONCLUSION

We have shown that the concept decomposition method may be suc-
cessfully applied to the Netflix dataset in order to provide meaning-
ful clustering of the movies into clusters (genres). This clustering
information can be further utilized for the prediction taskof a collab-
orative filtering recommender system. The method alone was able
to provide an improvement of 5.89% over Cinematch’s performance
on the probe dataset wihtout using any other meta-data information
apart from the user/movie ratings provided by Netflix. In addition
the method has excibited moderate computational complexity as it
can produce a whole set of probe predictions in less than 15 minutes
(including the off-line clustering stage). These results indicate that
the method is very promising and that in can be expecially useful
in cases where its results can be blended with other efficientmethods
that are currently under our research scope with regards to the Netflix
dataset.

References
[1] ‘The internet movie database’. http://www.imdb.com/.
[2] Robert M. Bell and Yehuda Koren, ‘Lessons from the netflixprize chal-

lenge’,SIGKDD Explor. Newsl., 9(2), 75–79, (December 2007).
[3] J. Bennett and S. Lanning, ‘The netflix prize’, inProc. KDD-Cup

and Workshop at the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, (2007).

[4] J. C. Bezdek,Pattern Recognition with Fuzzy Objective Function Algo-
rithms, Plenum Press, New York, 1981.

[5] I. S. Dhillon and D. S. Modha, ‘Concept decompositions for large
sparse text data using clustering’,Machine Learning, 42(1), 143–175,
(Jan 2001).

[6] David Goldberg, David Nichols, Brian M. Oki, and DouglasTerry, ‘Us-
ing collaborative filtering to weave an information tapestry’, Commun.
ACM, 35(12), 61–70, (December 1992).

[7] T. Kohonen, Self-Organization and Associative Memory, Springer-
Verlag, N.Y.

[8] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Her-
locker, Lee R. Gordon, and John Riedl, ‘Grouplens: applyingcollabo-
rative filtering to usenet news’,Commun. ACM, 40(3), 77–87, (1997).

[9] Daniel D. Lee and Sebastian S. Seung, ‘Learning the partsof objects
by non-negative matrix factorization’,Nature, 401, 788–91, (October
1999).

[10] J. Macqueen, ‘Some methods for classification and analysis of multi-
variate observations’, inProceedings of the 5th Berkeley Symposium
on Mathematical Statistics and Probability, eds., L. M. Le Cam and
J. Neyman, volume 1 ofBerkeley: University of California Press, pp.
281–297, (1967).

[11] P. McJones, ‘Eachmovie collaborative filtering data set’. Available from
http://research.compaq.com/SRC/eachmovie/, 1997.

[12] Bradley N. Miller, Istvan Albert, Shyong K. Lam, JosephA. Konstan,
and John Riedl, ‘Movielens unplugged: experiences with an occasion-
ally connected recommender system’, inIntelligent User Interfaces, pp.
263–266, (2003).

[13] Jasson D. M. Rennie and Nathan Srebro, ‘Fast maximum margin matrix
factorization for collaborative prediction’, inICML ’05: Proceedings of
the 22nd international conference on Machine learning, pp. 713–719,
New York, NY, USA, (2005). ACM.

[14] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, PeterBergstrom,
and John Riedl, ‘Grouplens: an open architecture for collaborative fil-
tering of netnews’, inCSCW ’94: Proceedings of the 1994 ACM con-
ference on Computer supported cooperative work, pp. 175–186, New
York, NY, USA, (1994). ACM.

[15] Paul Resnick and Hal R. Varian, ‘Recommender systems - introduction
to the special section’,Commun. ACM, 40(3), 56–58, (1997).

[16] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl, ‘In-
cremental singular value decomposition algorithms for highly scalable
recommender systems’, inProceedings of the 5th International Confer-
ence in Computers and Information Technology, (2002).

[17] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John
Reidl, ‘Item-based collaborative filtering recommendation algorithms’,
in World Wide Web, pp. 285–295, (2001).

[18] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John Riedl,
‘Analysis of recommendation algorithms for e-commerce’, in ACM
Conference on Electronic Commerce, pp. 158–167, (2000).

[19] J. Ben Schafer, Joseph A. Konstan, and John Riedi, ‘Recommender sys-
tems in e-commerce’, inACM Conference on Electronic Commerce, pp.
158–166, (1999).

[20] J. Ben Schafer, Joseph A. Konstan, and John Riedl, ‘E-commerce rec-
ommendation applications’,Data Mining and Knowledge Discovery,
5(1/2), 115–153, (2001).

[21] V. Schickel-Zuber and B. Faltings, ‘Using hierarchical clustering for
learning the ontologies used in recommendation systems’, in Thirteenth
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, (2007).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 30

Filler Items Strategies for Effective Shilling Attacks

Sanjog Ray
1
 and Ambuj Mahanti

2

 ABSTRACT. Recommender systems have become a widely
researched area because of its widespread application in ecommerce
platforms. One area of research which has recently gained

importance is the security of recommender systems. Malicious users
may influence the recommender system by inserting biased data
into the system. Such attacks may lead to erosion of user trust in the
objectivity and accuracy of the system. Recent research on
modeling of attacks have mainly focused in creating attack profiles
which have high similarity with as many genuine users as possible.
In this paper, we introduce attack strategies that are based on
creating attack profiles that have high similarity with only those

genuine users who have already rated the target item. Our approach
considers the target item rating distribution to assign values to filler
items. We show through experiments that our strategies on being
applied to an average attack model results in substantial
improvement over existing attack models.

1 INTRODUCTION

Recommender systems are technology based systems that provide
personalized recommendations to users. Recommendations are
generated from opinions and actions of other users with similar
tastes. However, with increasing popularity of recommender
systems in ecommerce sites they have become susceptible to
shilling attacks. In shilling attacks, attackers try to influence the
system by inserting biased data into the system. Recent researches

have started focusing on attack models and attack detection
strategies. [1, 2, 3 and 4]

An attack on a recommender system is mounted by injecting a
set of biased attack profiles into the system. Each attack profile
contains biased ratings data and a target item. Profiles are injected
into the system by fictitious user identities created by the attacker.
Every attack can be classified as a push attack or a nuke attack. In a
push attack, the objective of the attacker is to increase the
likelihood of the target item being recommended to a large section

of the users in the system. While in a nuke attack, the objective is to
prevent the target item from being recommended.

An attack is also classified as a high-knowledge attack or low-
knowledge attack [1]. A high-knowledge attack requires more detail
knowledge of the rating distributions of each item present in the
system. While in a low-knowledge attack, to launch an attack,
dependence on the recommender system for information on the
items is minimal. The approach of construction the attack profile,

based on knowledge about the items, products, and users of
recommender systems is known as an attack model. The primary
objective of an attacker is to build attack models that provide the
most impact with minimal knowledge. The other concern of
importance to an attacker is to create models which are hard to
detect by attack detection algorithms.

The general form of a push attack profile is shown in figure 1.

1
 Indian Institute of Management, India, email: fp062004@iimcal.ac.in

2
 Indian Institute of Management, India, email: am@iimcal.ac.in

An attack profile consists of a set of m ratings for m items; where m
is the total number of items present in the system. This attack
profile of m ratings can be divided into four sets of items: a target

item it, a set of selected items IS, a set of filler items usually
randomly chosen IF, and a set of unrated items IE. Attack models
are defined by the rules by which the four set of items are identified
and the way ratings are assigned to the items present in the sets. For
some attacks set of selected items may be empty.

Figure 1. A general form of attack profile

Most past researches have mainly focused on the set of selected

items while creating new attack models. In this paper, we examine

the importance of the target item rating distribution in improving
the effectiveness of an attack. This paper proposes different
strategies for selecting values for the filler items. It examines the
effectiveness of each strategy for a push attack. We show that filler
item strategy depends on the target item ratings distribution.
Through experimental evaluation we show that having the right
values for filler items can result in more effective attacks. Our paper
provides an effective plan for mounting an average attack by
intelligently selecting filler items values, values based on target

item ratings distribution.
This paper is organized as follows. In section 2 we provide a

brief summary of various attack models and their filler strategies. In
section 3 user-based collaborative filtering algorithm and evaluation
metric used are described. In section 4 we provide details of our
work of selecting different strategies for assigning values to filler
items. In section 5 we describe the experimental evaluation process
and report the results obtained. Finally, we conclude the paper in

section 6.

2 TYPES OF ATTACK

Various attack models have been proposed in previous researches
on shilling of recommender systems. We discuss below, some of
the popular attack models on which much research is focused on. A

comprehensive study of different attack models can be found in [1].
Random attack: One of the initial attack models, attack profile

has filler items chosen randomly and ratings are assigned to the
filler items from a set of random values chosen from a distribution
centered on the system mean. System mean is the mean for all user
ratings across all items. This is a low – knowledge attack as minimal
knowledge is required to obtain system mean value. It has been
found that this model is not very effective [1].

Average attack: One of the most powerful attack models. In an
average attack model, set of selected items is empty. Filler items are
selected randomly, and each filler item is assigned its mean rating.
Mean rating here corresponds to the average rating for the item
across all users in the database who have rated it. Average attack is
a high-knowledge attack as mean rating of each filler item is

Selected
Items (IS)

Filler items
(IF)

Unrated
items (IE)

Target item
(it)

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 31

required to mount an attack. However, in [5] it has been shown that
this attack can be effective with limited knowledge i.e. a small set
of filler items can perform an effective attack.

Bandwagon attack: In this model, the set of selected items

contains few of those items that have high popularity among users.
Thus, attack profiles created will have higher chances of being
similar to a large number of users. Selected items and the target
item are assigned maximum rating value. As in random attack, filler
items are randomly selected and assigned mean rating of items
across the whole system. Therefore, bandwagon attack can be seen
as an extension of the random attack. Bandwagon attack is a low–
knowledge attack as popular items data can be obtained from

publicly available information sources.
Segmented attack: This attack is modeled to push the target item

to those users who are most likely to be influenced by the
recommendation. A segment is defined as a group of users having
affinity for items of similar features. Group of users who have rated
highly most of the popular horror movies is an example of a
segment of users interested in horror movies. So, an attacker with
intent to promote a horror movie will try to get his target item

recommended to this segment of users as the likelihood of
influencing them is higher.

In this model, the set of selected items contains few of those
items that have high popularity among users of the targeted
segment. Selected items and the target item are assigned maximum
rating value. Filler items are identified randomly and given the
lowest possible rating. It has been shown that segmented attack is
the most effective model against in-segment users. It is a low-
knowledge attack as selection of highly rated movie with similar

features can be achieved from public information sources.

3 RECOMMENDATION ALGORITHM &

EVALUATION METRIC

In this paper we have evaluated our filler item strategy for attacks
against the user based collaborative filtering algorithm. In this
section we describe the collaborative filtering algorithm, the
evaluation metric used, and the notion of prediction shift.

3.1 User based collaborative filtering

In collaborative filtering, a user is recommended items that people
with similar tastes and preferences liked in the past. This technique
mainly relies on explicit ratings given by the user and is the most
successful and widely used technique [6]. In user based
collaborative filtering [7], firstly, neighborhood of k similar users is

found for the target user. Then for generating prediction for an item
not yet seen by the target user, weighted average of the ratings
given by the k similar neighbors towards the predicted item is used.

To calculate similarity among users we use Pearson-r correlation
coefficient. Let the set of items rated by both users u and v be
denoted by I, then similarity coefficient () between them is

calculated as

 Here denotes the rating of user u for item i, and is the

average rating given by user u calculated over all items rated by u.

Similarly, denotes the rating of user v for item i, and is the

average rating given by user v calculated over all items rated by v.

To compute the prediction for an item i for target user u, we use the
following formula.

Where V represents the set of k similar users. While calculating
prediction only those users in set V who have rated item i are
considered.

3.2 Prediction shift

For the purpose of measuring the effectiveness of the attack we use
the widely used metric prediction shift. Prediction shift of a target
item is the difference of average predicted rating of the target item,
after and before the attack, for all target users. Average Prediction
shift of an attack is the average change in prediction for all target
items. We use the same formula as in [8], which is defined as
follows.

 Let U and I be the sets of target users and target items. Let

denote the prediction shift for user u on item i. can be measured

as , where is the prediction value after the

attack and before the attack. The average prediction shift for an

item i over all users can be computed as

The prediction shift for an attack model is the average prediction
shift for all items tested. It can be computed as

4 FILLER ITEM STRATEGIES FOR AVERAGE

ATTACK

Known attack models like average attack, bandwagon attack, and
segmented attack are focused at creating attack profiles which have
greater chance of having high similarity with as many users as
possible. Because an attack profile with high similarity with a
genuine user increases the chance of it being selected in top k
similar neighbors of the user, thereby influencing the rating of the
target item. Bandwagon attack and segmented attack have tried to
achieve this objective by selecting popular items as part of their

attack profiles. An attack profile consisting of the popular items will
have similarity with higher number of users, which should finally
result in an effective attack. However, it has been found that
average attack is the more effective compared to bandwagon and
segmented attack [1]. One possible reason for this unexpected result
could be the presence of other factors which also affect the
effectiveness of an attack.

Our proposed approach considers rating distribution of the target
item as a critical factor that can affect the effectiveness of an attack.

Unlike previous attack models which focus on creating attack
profiles that are similar to as many users as possible from the set of
all users; the objective of our approach is to create attack profiles
that increase similarity with as many of those users who have rated
the target item. Our approach proposes two strategies that are based
on the rating distribution of the target item. Both strategies improve

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 32

similarity by assigning appropriate values to filler items. As we
show below, our proposed approach performs substantially better
than average attack model.

Our proposed approach is described below.

First, on the basis of the target item rating distribution, target item is
categorized into TL or TH category.

TL : Target item with majority of their ratings at lower end of the
rating scale fall into this category. In our experiment we grouped
items with 60 % or more of their ratings as 1 or 2 in this category.

TH : Target item with majority of their ratings at higher end of
the rating scale fall into this category. In our experiment we
grouped items with 60 % or more of their ratings as 4 or 5 in this

category.
Once we know the category of the target item, appropriate

strategy for assigning values to filler items is used to construct
attack profiles. We define below the two strategies.

4.1 Strategy L

This strategy is followed when the target item falls in TL category.
As majority of the users have rated the target item at the lower end
of the rating scale, to improve effectiveness of the attack, we need
to create profiles that are similar to the users who have rated the
target item with a lower value. So, to improve similarity, a
randomly selected filler item is assigned the average rating given to
the filler item by those users who have rated the target item at the
lower scale.

Let UA be the set of all users who have rated the randomly
selected filler item IF. Let UL be the set of all users who have rated
the target item at a lower scale of rating and have also rated the
randomly selected filler item. So, in this strategy, filler item IF is
assigned the average rating given to it by the set of users UL. This
approach differs from average attack in the way filler items are
assigned values, as in an average attack item IF was assigned the
average rating given to it by the set of users UA.

4.2 Strategy H

This strategy is followed when the target item falls in TH category.
As a large majority of the users have rated the target item at the
higher end of the rating scale, to improve effectiveness of the
attack, we need to create profiles that are similar to the users who

have rated the target item with a higher value. So, to improve
similarity, a randomly selected filler item is assigned the average
rating given to the filler item by those users who have rated the
target item at the higher scale.

Let UA be the set of all users who have rated the randomly
selected filler item IF. Let UH be the set of all users who have rated
the target item at a higher scale of rating and have also rated the
randomly selected filler item. So, in this strategy, filler item IF is
assigned the average rating given to it by the set of users UH. This

approach differs from average attack in the way filler items are
assigned values, as in average attack item IF was assigned the
average rating given to it by the set of users UA.

5 EXPERIMENTAL EVALUATION &

DISCUSSION

We performed the experimental evaluation of our strategies on the
publicly available MovieLens data set [9]. This is the most widely
used dataset in recommender systems research. MovieLens consists

of 100,000 ratings made by 943 users on 1682 movies. Each user in
the data set has rated at least 20 movies and each movie has been
rated at least once. A timestamp value is associated with each user,
movie, and rating combination. The data set also contains

information on the demographic detail (age, sex, occupation, and
zip code) of each user and basic information (genre and release
date) of each movie. The ratings are made in a scale of 1 to 5, where
5 indicate extreme likeness for an item and 1 dislike.

We evaluated effectiveness of both the strategies on average
attack model. User based collaborative algorithm was used as the
recommendation algorithm. For similarity calculation and
prediction, equations 1 and 2 stated in section 3 were used. We used

a neighborhood size of k = 20 for prediction calculation. Case
amplification value of 10 was used while calculating correlation and
only positive correlations values were considered for computing
predictions.

To conduct our evaluation, we selected a sample 20 items. Out
of the 20 items, 10 items belonged to TL category while remaining
10 items to TH category. All the 20 items were selected randomly
from a larger set of items belonging to each category. We also

randomly selected a sample of 50 target users. Target users selected
were those who have never rated any of the 20 test items. Each of
the target items was attacked individually and the prediction shift
was calculated by averaging the prediction shift observed for each
user. The final prediction shift for the attack is the average
prediction over all items used in the test. Equation 4 was used to
calculate the metric.

All experiments were conducted for “Size of attack” values 1%,
3%, 6%, 12%, and 15%. “Size of attack” represents number of

attack profiles added as a percentage of pre-attack profiles. 1%
“Size of attack” implies 10 attack profiles were added to a system of
1000 genuine users. On the basis of the results reported in [1] that
best results are reported when a filler size of 3% used in an average
attack, we used a filler size of 3% for all our tests i.e. 3 % of 1682
items which is approximately 50 filler items. We used three
strategies for filler items: Strategy L, Strategy H and average attack.
. For average attack, filler item strategy used was the same as in an

average attack i.e. the mean of the filler item was assigned to it.
Category TL, Category TH, Strategy L, and strategy H were
implemented the way explained earlier in section 4.

Figure 2 shows the prediction shift values of three attacks
(Strategy L, Strategy H and average attack) for items belonging to
TL category. From the graph it‟s obvious that for items in TL

category, Strategy L is the most effective attack strategy at lower
values of attack size. Similarly, figure 3 shows the prediction shift

values for the three attack strategies for items belonging to TH

category. From the graph it can be concluded that for items
belonging to TH category, Strategy H performs much better than
other attack strategies at lower values of attack size. Figure 4,
shows the prediction shift of the three strategies for a set of 20
randomly selected target items. In figure 4 we observe that average
attack performs better than Strategy L and Strategy H, this
observation further strengthens the importance of tailoring of attack

strategy on the basis of target item rating distribution.
Experimental results clearly show that our approach of selecting

a strategy based on target item rating distribution outperforms the
best available attack model i.e. average model. One drawback of
our attack strategies is its high knowledge cost. However,
automated software agents can help diminish the cost. One
approach that can be used to decrease the cost is to use a subset of
users while assigning values to filler items. For example, in
Strategy H instead of assigning a filler item IF the average rating

given to it by the set of users UH. , we assign IF the average rating

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 33

given to it by a subset of 5 randomly selected users from UH. In
future work we plan to experimentally verify the effectiveness of
this cost reduction approach.

Figure 2: Attack on TL category of items

Figure 3: Attack on TH category of items

Figure 4: Attack on randomly selected target items

6 CONCLUSION

This paper examines different strategies that can increase the
effectiveness of average attack model. Our approach provides a new
perspective of using target item rating distribution to tailor different
strategies for filler items. Through experiments we show that
implementing the right filler strategy based on target item rating
distribution, results in substantial improvement over the baseline

average attack. While our attack strategies have focused only on
assigning the right values to filler items for improving attacks
effectiveness, we believe proper selection of filler items can also
improve the effectiveness of an attack. In future, we plan to
examine the filler items strategies for other attack models, and also
create algorithms to improve robustness and stability of
recommender systems against shilling attacks.

7 REFERENCES

[1] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams,
'Towards Trustworthy Recommender Systems: An Analysis of
Attack Models and Algorithm Robustness', ACM Transactions on
Internet Technology, 7, 23:1-38, (2007).
 [2] B. Mehta, T. Hofmann, and W. Nejdl, „Robust Collaborative

Filtering‟, Proceedings of the 2007 ACM conference on
Recommender systems, 49-56,(2007).
[3] J.J.Sandvig, B. Mobasher, and R. Burke, ‘Robustness of
collaborative recommendation based on association rule mining‟,

Proceedings of the 2007 ACM conference on Recommender
systems, 105-112, (2007).
[4] S. Lam, and J. Riedl, „Shilling recommender systems for fun
and profit‟, Proceedings of the 13th International WWW
Conference, (2004).

[5] R. Burke, B. Mobasher, and R. Bhaumik, „Limited
Knowledge Shilling Attacks in Collaborative Filtering Systems‟,
Proceedings of workshop on Intelligent Techniques for Web
Personalization,(2005).
[6] J.Konstan, B., Miller, D. Maltz, J. Herlocker, L. Gordon, and
J. Riedl ‚„GroupLens: Applying collaborative filtering to Usenet
news‟. Communications of the ACM, 40, 3, 77–87, (1997).
[7] J.Herlocker, J. Konstan, A. Borchers, and J. Riedl, „An

algorithm framework for performing collaborative filtering‟,
Proceeding of SIGIR, ACM, 77-87, (1999).
[8] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams,
'Effective Attack Models for Shilling Item-Based Collaborative
Filtering Systems', Proceedings of the 2005 WebKDD
Workshop,(2005).
[9] MovieLens data set,www.grouplens.org

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 34

On the Scalability of Graph Kernels
Applied to Collaborative Recommenders

Jérôme Kunegis, Andreas Lommatzsch, Şahin Albayrak 1
and Christian Bauckhage 2

{kunegis, andreas, sahin}@dai-lab.de, christian.bauckhage@telekom.de

Abstract. We study the scalability of several recent
graph kernel-based collaborative recommendation algorithms.
We compare the performance of several graph kernel-based
recommendation algorithms, focussing on runtime and rec-
ommendation accuracy with respect to the reduced rank of
the subspace. We inspect the exponential and Laplacian expo-
nential kernels, the resistance distance kernel, the regularized
Laplacian kernel, and the stochastic diffusion kernel. Further-
more, we introduce new variants of kernels based on the graph
Laplacian which, in contrast to existing kernels, also allow
negative edge weights and thus negative ratings. We perform
an evaluation on the Netflix Prize rating corpus on prediction
and recommendation tasks, showing that dimensionality re-
duction not only makes prediction faster, but sometimes also
more accurate.

1 Introduction

In information retrieval, the task of filtering and recommend-
ing items to users is often done in a content-based manner [1].
Collaborative filtering, by contrast, bases item rankings on
ratings collected from users [13].

A collaborative filtering system therefore usually consists of
a database of users, items (such as text documents or movies),
and a collection of ratings that users have assigned to these
items.

Collaborative rating databases are modeled as bipartite
graphs, where users and items are represented by means of
nodes, and the ratings by means of labeled edges. Recently,
kernels have been used to tackle the task of recommendation.
Graph kernels in particular are based on the rating database’s
underlying bipartite graph model. Traditionally, this type of
kernel only copes with positively rated links. For a recommen-
dation application this is a drawback since users may want
to express their dislike and therefore may also assign nega-
tive ratings. In this paper, we therefore introduce kernels for
collaborative rating prediction which also cope with negative
ratings.

In order to scale to the size of current rating databases, col-
laborative recommendation algorithms must be able to pro-
cess very large rating corpora. This necessitates some form of
dimensionality reduction. Of course, dimensionality reduction
will influence prediction accuracy and runtime. In this paper,

1
DAI-Labor, Technische Universität Berlin, Germany

2
Telekom Laboratories, Berlin, Germany

we study the performance of collaborative recommendation
algorithms in combination with dimensionality reduction.

Our contributions are therefore as follows: First, we study
the prediction accuracy of graph kernels for recommendation
on signed data, as opposed to unsigned data. Second, we in-
troduce signed variants of all graph kernels that are based on
the graph Laplacian. Third, we evaluate the influence of di-
mensionality reduction on the recommendation accuracy and
runtime performance for both training and prediction.

Next, we first review related work; we then introduce terms
and definitions used in collaborative filtering. The different
graph kernels we consider in this paper are presented in the
third section and the fourth section describes how to apply
dimensionality reduction to each of these kernels. Afterwards,
we discuss the application of graph kernels to recommendation
algorithms. Finally we present and discuss our experimental
evaluation.

2 Related Work

For a general description of collaborative rating prediction,
we refer the reader to [2]. Graph kernels have been used for
collaborative recommendations in [3]. The authors of [6] apply
kernels to link analysis. In this study, the underlying graph is
weighted by only positive values.

The matrix exponential has been used outside of computer
science for sociometric analysis [8], and has been rediscovered
for collaborative filtering recently [12].

Dimensionality reduction for collaborative filtering is dis-
cussed in [14]. This previous work however only apply dimen-
sionality reduction to the adjacency matrix of the bipartite
rating graph, without using graph kernels. This reference gives
values for the optimal reduced rank between 5 and 15. We will
refer to this method as simple dimensionality reduction.

As computation of dense kernels is too expensive in the
case of large rating databases, sparse methods have to be
employed, which in the general case scale much better than
dense methods [4].

3 Definitions

Throughout this paper, we assume U to be the set of users
where |U | = m, likewise we assume I to be the set of items
where |I| = n. The rating database is represented by means of
a sparse matrix R ∈ R

m×n whose number of nonzero elements
is denoted by r.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 35

The sparse matrix R corresponds to a weighted bipartite
rating graph G = (V, E, W) where V = U ∪ I is the set of
vertices and E the set of edges. For every rating Rui 6= 0,
E contains an edge (u, i), the corresponding edge weights are
given by Wui = Rui. Since we want to consider positive and
negative ratings, we do not restrict W to nonnegative values.

The adjacency matrix A ∈ R
(m+n)×(m+n) of G is given

by A =

»

R
RT

–

and we also define a diagonal degree

matrix D whose entries Dii contain the sum of adjacent edge
weights of the corresponding node i. The graph Laplacian is
then given by L = D − A.

For our extension to the case of negative ratings, we also
define the absolute degree matrix D̄, which is a diagonal ma-
trix, too, and contains the sum of absolute edge weights for
each node. Analoguously, we define L̄ = D̄ − A.

4 Graph Kernels

In this section we present the kernels evaluated in this paper.
For all except one of these, we introduce new variants in order
to be able to deal with signed rating data. We also describe
dimensionality reduction in itself, which is not a kernel but
can be used in place of a kernel.

All kernels are based on the following observation: If K ∈
R

V ×V is a symmetric matrix, then the following function d
is a dissimilarity matrix: d(i, j) = Kii + Kjj − Kij − Kji. Its
square root is an Euclidean metric in the space spanned by
the eigenvectors of K, and its inverse is a similarity measure
between any two nodes [9]. In the next paragraphs, we give
expressions for the matrix K for the various kernels.

Rank reduced adjacency matrix kernel. The adja-
cency matrix A itself may be interpreted as a kernel, because
if two nodes are similar (positively or negatively) they will be
connected by an edge. However, in order to derive predictions
for items that were not rated so far, this kernel is only useful
after a rank reduction has been applied. We simply set

KDIM = A
Exponential diffusion kernel. [10] defines the exponen-

tial diffusion kernel using the matrix exponential:
KEXP = exp(αA) =

P∞
i=0

1

i!
αiAi

Since An contains the number of paths of length n be-
tween any two nodes, this kernel represents an average of path
counts between nodes, weighted by the inverse factorial of
path length. Therefore, longer connections are less influential
than shorter ones.

Resistance distance kernel. This kernel is also called the
commute time kernel. It results from interpreting the graph
G as a network of electrical resistances with resistance values
given by the edge weights W . Given a pair of nodes, the total
resistance induced by the network is a distance given by the
following kernel [16]:

KRES = L+ = (D − A)+

where L+ denotes the Moore-Penrose pseudoinverse of the
Laplacian matrix.

In order to also account for negative edge weights, we define
a signed resistance distance kernel [11]

KRES−S = L̄+ = (D̄ − A)+

where we apply the absolute degree and Laplacian matrix
as defined in the previous section.

Stochastic diffusion kernel. This kernel is based on a

stochastic diffusion process and hence only applies to positive
data [10].

KSTO = (1 − α)(I − αD−1A)−1

The parameter α denotes the probability in the diffusion
process of following a graph edge instead of returning to the
starting node. The matrix D−1A is a stochastic diffusion ma-
trix, and this kernel is therefore designed for positive data.

As with the resistance distance kernel, this kernel is a new
variant of the stochastic diffusion kernel which also takes into
account negative ratings

KSTO−S = (1 − α)(I − αD̄−1A)−1

Laplacian exponential diffusion kernel. The Laplacian
exponential diffusion kernel applies the matrix exponential to
the Laplacian [3, 15]:

KLEX = exp(−αL) = exp(−α(D + A))
We found this kernel to perform poorly in practice. How-

ever, a signed version leads to acceptable results.
KLEX−S = exp(−αL̄) = exp(−α(D̄ + A))

In the evaluation, we will only use the signed Laplacian
exponential diffusion kernel.

Regularized Laplacian kernel. This kernel is a general-
ization of the random forest kernel [3].

KREL = (I + α(γD − A))−1

The random forest kernel itself is based on random forest
models [3]. It arises in the calculation of weighted counts of
forests of G in which two nodes belong to the same tree.

KFOR = (I + L)−1

We do not show the random forest kernel in the evalua-
tion because it performs similarly to the regularized Lapla-
cian kernel. We also define a signed variant of the regularized
Laplacian kernel:

KREL−S = (I + α(γD̄ − A))−1

We only use the signed regularized Laplacian kernel for
evaluation, as it performs much better than the unsigned vari-
ant.

All these kernels are based on matrix inversion or exponen-
tiation and cannot be computed directly.

5 Dimensionality Reduction

Given the huge but sparse adjacency matrix A, any compu-
tation of graph kernels will require dimensionality reduction.

If A = QΛQT denotes the eigenvalue decomposition of the
symmetric matrix A, a rank-k approximation of A is given by
Ã = QkΛkQT

k , where k ≪ m + n is the desired rank and Qk

and Λk denote the corresponding truncations of Q and Λ.
This kind of dimensionality reduction is also known as la-

tent semantic analysis and is frequently used for projecting
high-dimensional data into lower dimensional spaces.

In order to apply this reduction to a kernel K, we observe
that all kernels which we presented in the previous section
can be expressed as K = Qf(Λ)QT , where Q and Λ are given
by the eigenvalue decomposition of the a linear combination
of the matrices A and D. The function f(Λ) depends on the
individual characteristics of the kernel. Note that f(Λ) can be
computed efficiently because it only only has to be applied to
the diagonal matrix Λ. In the kernels we consider in this pa-
per, three different types of f(Λ) occur: Matrix inversion, the
Moore-Penrose pseudoinverse, and the matrix exponential.

The rank reduced kernels are then computed as in the fol-
lowing example: If αA = QΛQT then K̃EXP = Qk exp(Λk)QT

k .

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 36

We also note that the truncation mode depends on the oper-
ation performed. For inversion and pseudo-inversion, we must
retain the eigenvalues closest to zero, excluding zero eigenval-
ues for the pseudoinverse. For the matrix exponential, we re-
tain the biggest eigenvalues and corresponding eigenvectors.
For simple dimensionality reduction, we retain the eigenvalues
with biggest absolute value.

6 Recommendation and Prediction

In this section, we describe the basic rating prediction algo-
rithm, and the rating prediction algorithms based on graph
kernels.

A common preprocessing step in collaborative filtering is to
normalize the rating data. Normalization can be user-based
or item-based [5]. For user-based normalization, each user’s
nonzero ratings are scaled to zero mean and unit variance,
but zero entries of A remain unchanged.

In our implementation, we use a hybrid of user-based and
item-based normalization. Given a rating r, the normalized
rating r̂ is computed using the user’s and item’s mean rating
and rating standard deviation:

r̂ = (2r − µu − µi)/(σu + σi) (1)

Once a rating has been predicted based on the normalized
rating matrix, it has to be scaled back to the user’s original
range of ratings by inverting Equation (1).

Given a user u and item i and ignoring normalization, the
baseline user-based rating prediction algorithm [13] proceeds
as follows:

1. Retrieve all ratings of item i according to other users.
2. Compute the average over these ratings, weighted by the

correlation between the other users and user u.

To predict ratings using a kernel, the correlation step in this
algorithm is replaced by computing the similarity measure
induced by the kernel. Since collaborative filtering considers
user-user or item-item similarities, we consider distinct kernels
for the sets of users and items respectively.

Recommendation is implemented by predicting ratings for
all possible items, and choosing the items with the highest
rating prediction, in function of the number of items searched.

7 Evaluation

We use the Netflix Prize corpus of ratings3 for evaluation.
Out of the whole corpus, we use a subset of 3,216 users, 1,307
items and 57,507 ratings. The corresponding rating matrix is
filled to 1.37%. The test and training samples were drawn at
random from the complete rating set.

We measure the accuracy of rating prediction using the
root mean squared error (RMSE) which is the square root of
the average over all squared differences between the actual
and the predicted rating. This precedure is standard in the
collaborative filtering literature [2].

the accuracy of recommendation is given by the normalized
discounted cumulated gain (nDCG), as defined in [7].

3 http://www.netflixprize.com/

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0 5 10 15 20 25 30

N
or

m
al

iz
ed

 d
is

co
un

te
d

cu
m

ul
at

ed
 g

ai
n

(n
D

C
G

)

Reduced dimension (k)

EXP
DIM

LEX-S
RES

RES-S
STO

STO-S
REL-S

Figure 1. Comparison of recommendation accuracy in function

of the reduced rank k for all kernels. This figure shows the

normalized discounted cumulated gain (nDCG). Higher values

denote better recommendation.

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 0 5 10 15 20 25 30

R
oo

t m
ea

n
sq

ua
re

d
er

ro
r

(R
M

S
E

)

Reduced dimension (k)

EXP
DIM

LEX-S
RES

RES-S
STO

STO-S
REL-S

Figure 2. Comparison of rating prediction error in function of

the reduced rank k for all kernels. This figure shows the root

mean squared error (RMSE). Lower values denote more accurate

rating prediction.

For testing the scalability of the different kernel methods,
we varied the parameter k from 1 to 27 for each kernel. Fig-
ure 1 shows the nDCG in function of k for all kernels in the
recommendation task. Higher nDCG values denote more ac-
curate recommendations. Figure 2 shows the RMSE in func-
tion of k for all kernels in the prediction task. Lower RMSE
values denote more precise predictions.

Asymptotic behavior. We observe two different patterns
of asymptotic behavior. Some kernels attain their best perfor-
mance asymptotically for big k, while others reach an opti-
mum for a specific value of k. Table 1 summarizes these find-
ings. We note that most kernels (EXP, REL-S, RES, RES-S,
STO-S) show an inverted behavior on the recommendation
task than on the prediction task. Although simple dimension-

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 37

ality reduction shows isolated peaks for specific values of k,
there is no recognizable pattern for this kernel.

Table 1. Classification of graph kernels by their asymptotic

behavior. The left column groups the kernels attaining their best

performance at a specific, small value of k. The right column

contains the kernels having asymptotic optimal behavior for big

k. Kernels showing neither behavior are omitted.

kbest = k0 kbest = +∞

Recommender DIM EXP, RES, RES-S

STO, STO-S, REL-S

Prediction EXP, RES, RES-S LEX, STO

STO-S, REL-S

Choice of k. Algorithms with asymptotically optimal per-
formance reach their almost-optimum for k = 5. The other
kernels peak between k = 2 and k = 5. Both observations
suggest that a value k > 5 is not needed for this size of cor-
pus.

Stability. At the task of rating prediciton, all kernels per-
form smoothly in function of k. At recommendation, only the
resistance distance and regularized Laplacian kernels perform
smoothly. The other kernels’ performances vary much more
with changing k. We must therefore recommend the resistance
distance and regularized Laplacian kernels as their results are
more predictable and consistent.

Good recommender but bad predictor. We observe
that the regularized Laplacian kernel shows acceptable rec-
ommendation accuracy, but bad prediction accuracy except
for a small peak at k = 2, 3. We interpret this performance as
a correctly ranked prediction which however does not match
the actual values.

Simple dimensionality reduction. Dimensionality re-
duction itself performs worse than all proper kernels as ex-
pected. Also, the accuracy of simple dimensionality reduction
seems to oscillate between better performance for even k and
worse performance for odd k. We explain this by the fact that
the spectrum of A contains pairs of eigenvalues ±λ because
the rating graph is bipartite. Apparently, using only one of
these two eigenvalues and its respective eigenvector leads to
lower accuracy.

Laplacian vs adjacency matrix. We observe that ker-
nels based on the graph Laplacian perform better than kernels
based on the adjacency matrix. The resistance distance ker-
nel, which corresponds to the inverted Laplacian, is definitely
better than simple dimensionality reduction, and Laplacian
exponential kernel, while not more accurate than the expo-
nential kernel, has more stable behavior for changing k.

Signed kernels better than unsigned. The signed vari-
ants all performed better than the unsigned counterparts.
The near-exception are the stochastic diffusion kernels on the
prediction task, where the unsigned variant is more accurate
asymptotically. However, the overall peak is reached by the
signed variant at k = 3.

Overall best kernel. For the choice of overall best kernel,
we select the signed resistance distance and signed Laplacian
exponential kernel. The exponential kernel comes close but
has worse stability for varying k, making it difficult to recom-
mend in practice.

8 Conclusion and Future Work

In this paper, we studied the prediction accuracy of collabora-
tive recommender and rating prediction algorithms based on
graph kernels. We considered eight different kernels, including
three novel, signed variants.

We found that small reduced ranks are acceptable in most
cases depending on the rating corpus and that kernels based
on the graph Laplacian are usually better than kernels based
on the adjacency matrix. Also, we showed that dimensional-
ity reduction not only reduction the runtime but also makes
collaborative recommenders more accurate. We also showed
that most kernels can be used in the context of signed rating
data, when new signed kernel variants are used.

REFERENCES

[1] Justin Basilico and Thomas Hofmann, ‘Unifying collaborative

and content-based filtering’, in Proc. Int. Conf. on Machine
learning, p. 9. ACM Press, (2004).

[2] John S. Breese, David Heckerman, and Carl Kadie, ‘Empirical

analysis of predictive algorithms for collaborative filtering’, in

Proc. Conf. Uncertainty in Artificial Intelligence, pp. 43–52,

(1998).

[3] François Fouss, Luh Yen, Alain Pirotte, and Marco Saerens,

‘An experimental investigation of graph kernels on a collab-

orative recommendation task’, in Proc. Int. Conf. on Data
Mining, pp. 863–868, (2006).

[4] Gene H. Golub and Charles F. Van Loan, Matrix Computa-
tions, The Johns Hopkins University Press, October 1996.

[5] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and

John Riedl, ‘An algorithmic framework for performing collab-

orative filtering’, in Proc. Int. Conf. on Research and Devel-
opment in Information Retrieval, pp. 230–237, (1999).

[6] Takahiko Ito, Masashi Shimbo, Taku Kudo, and Yuji Mat-

sumoto, ‘Application of kernels to link analysis’, in Proc. Int.
Conf. on Knowledge Discovery in Data Mining, pp. 586–592,

(2005).

[7] Kalervo Järvelin and Jaana Kekäläinen, ‘Cumulated gain-

based evaluation of ir techniques’, ACM Trans. Inf. Syst.,
20(4), 422–446, (2002).

[8] Leo Katz, ‘A new status index derived from sociometric anal-

ysis’, Psychometrika, 18(1), 39–43, (March 1953).

[9] D. J. Klein and M. Randić, ‘Resistance distance’, Journal of
Mathematical Chemistry, 12(1), 81–95, (1993).

[10] R. Kondor and J. Lafferty, ‘Diffusion kernels on graphs and

other discrete structures’, in Proc. Int. Conf. on Machine
Learning, pp. 315–322, (2002).

[11] Jérôme Kunegis and Stephan Schmidt, ‘Collaborative filter-

ing using electrical resistance network models with negative

edges’, in Proc. Industrial Conf. on Data Mining, pp. 269–

282. Springer-Verlag, (2007).

[12] Joel C. Miller, Gregory Rae, Fred Schaefer, Lesley A. Ward,

Thomas LoFaro, and Ayman Farahat, ‘Modifications of klein-

berg’s hits algorithm using matrix exponentiation and web log

records’, in Proc. Int. Conf. on Research and Development in
Information Retrieval, pp. 444–445, (2001).

[13] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and

J. Riedl, ‘GroupLens: An Open Architecture for Collaborative

Filtering of Netnews’, in Proc. Conf. on Computer Supported
Cooperative Work, pp. 175–186, (1994).

[14] Badrul Sarwar, George Karypis, Joseph Konstan, and John

Riedl, ‘Incremental svd-based algorithms for highly scalable

recommender systems’, in Proc. Int. Conf. on Computer and
Information Technology, pp. 399–404, (2002).

[15] A. Smola and R. Kondor, ‘Kernels and regularization on

graphs’, in Proc. Conf. on Learning Theory and Kernel Ma-
chines, pp. 144–158, (2003).

[16] F. Y. Wu, ‘Theory of resistor networks: The two-point resis-

tance’, Journal of Physics A, 37, 6653–6673, (2004).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 38

Empirical Evaluation of Ranking Trees on the Problem of
Recommending Learning Algorithms

Carla Rebelo1 and Carlos Soares2 and Joaquim Pinto da Costa3

Abstract. This paper addresses the recommendation of Machine
Learning/Data Mining (DM) algorithms, which is a less common
recommendation task than others, such as the recommendation of
web pages or products in web sites. This problem is relevant because
many different algorithms are available today for DM tasks such as
classification and regression, and the computational cost of execut-
ing all off them on a given dataset is very high. Therefore, the user
must decide which algorithm(s) should be tested. The Metalearning
approach to this problem consists of using information about the past
performance of a set of learning algorithms on a set of datasets to in-
duce a mapping between characteristics of those datasets to the rel-
ative performance of those algorithms. In this paper we empirically
evaluate the ranking trees algorithm on some instances of this met-
alearning problem. Our results do not confirm previous results that
showed that ranking trees outperformed the k-Nearest Neighbors al-
gorithm.

1 Introduction
Currently, the most popular field of application of Recommender
Systems is e-business [1]. However, there are other applications with
a similar nature. One such application is the recommendation of al-
gorithms in Machine Learning and Data Mining. The overall goal of
this application is the recommendation of an algorithm to be used on
a given dataset, from the set that is available to the user. One approach
to this problem is Metalearning, which consists of using a learning al-
gorithm to model the relation between the characteristics of datasets
and the relative performance of a set of algorithms [4]. As argued
in Section 2, recommendations should be in the form of a ranking
(of a subset) of the available algorithms. Therefore, a metalearning
approach to this problem can be regarded as a recommender system.

However, typical algorithms used in recommender systems cannot
be used directly in the algorithm recommendation problem, as dis-
cussed in Section 3. Specific methods for learning rankings which
are suitable for problems such as this one have been developed, in-
cluding the k-NN ranking algorithm [4]. Another ranking algorithm
that has been used for metalearning is Ranking Trees, an adaptation
of the Top-Down Induction of Decision Trees (TDIDT) for ranking
tasks [14] (Section 4). A ranking tree is a decision tree in which the
leaves do not predict one from a set of possible class values but, in-
stead, predict a ranking of the set of class values (e.g., algorithms in
the case of metalearning).

1 LIAAD-INESC Porto LA, Universidade do Porto, Portugal
email: crebelo@liaad.up.pt

2 Faculdade de Economia do Porto, Universidade do Porto, Portugal
email: csoares@fep.up.pt

3 Faculdade de Ciências, Universidade do Porto, Portugal
email: jpcosta@fc.up.pt

However, the algorithm was tested on a single metalearning prob-
lem. The goal of this work is to empirically evaluate ranking trees on
several metalearning problems. We present our results in Section 5.

2 Recommendation of Learning Algorithms
Many different learning algorithms are available to data analysts
nowadays. For instance, decision trees, neural networks, linear dis-
criminants, support vector machines among others can be used in
classification problems. The goal of data analysts is to use the
one that will obtain the best performance on the problem at hand.
Given that the performance of learning algorithms varies for different
datasets, data analysts must select carefully which algorithm to use
for each problem, in order to obtain satisfactory results. Let us con-
sider the estimates of the classification accuracy of four algorithms
on two datasets, given in Table 1. For instance, the best algorithm on
d1, a1, obtains a classification accuracy of 90%. If the user executes
a3 rather than a1, accuracy decreases by 8%, which is probably sig-
nificant. If a2 is executed, the accuracy obtained is further reduced to
61%.

Table 1. Accuracy of four learning algorithms on two classification
problems.

a1 a2 a3 a4

d1 90% 61% 82% 55%
d2 84% 86% 60% 79%

Selecting the algorithm by trying out all alternatives is generally
not a viable option, as explained in [14]:

In many cases, running an algorithm on a given task can be
time consuming, especially when complex tasks are involved.
It is therefore desirable to be able to predict the performance of
a given algorithm on a given task from description and without
actually running the algorithm.

The learning approach to the problem of algorithm recommendation
consists of using a learning algorithm to model the relation between
the characteristics of learning problems (e.g., application domain,
number of examples, proportion of symbolic attributes) and the rela-
tive performance of a set of algorithms [4]. We refer to this approach
as metalearning because we are learning about the performance of
learning algorithms.

Many metalearning approaches to the problem of algorithm rec-
ommendation handle it as a supervised classification task. Thus, the
recommendation provided to the user consists of a single algorithm.
However, this is not the most adequate form of recommendation for

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 39

this problem because it does not provide any further guidance when
the user is not satisfied with the results obtained with the recom-
mended algorithm. The alternative of executing all the algorithms
(which often have parameters that can be tuned) has a very high com-
putational cost and is, thus, not a viable strategy. Nevertheless, it is
often the case that the available computational resources are suffi-
cient to run some of the available algorithms. If recommendation in-
dicates the order in which the algorithms should be executed, then
the user can execute as many as possible, thus increasing the proba-
bility that a satisfactory result is obtained. Therefore, the problem of
metalearning is a good example of a recommendation problem that
should be tackled as a ranking task.

3 Learning Rankings
The type of ranking problem that we are dealing with in this work
is somewhat different from the problems that are typically addressed
with recommender systems. In fact, it has more similarities with the
problem of supervised classification. In classification we have a set
of examples, characterized by attributes and each one is assigned to
one of a set of classes. Given a new example, described by the values
of the attributes, the objective in supervised classification is to predict
the class it belongs to. In ranking the goal is to predict the order of the
classes as applicable to each example. Thus, the input to a problem
of learning rankings is a set of examples (or instances) as described
by a set of attributes and with a known ranking of the classes (the
target ranking). The goal is to obtain a model that, given a new ex-
ample described by the same set of attributes, generates a ranking of
all the classes (or items). One of the most important differences to
the problems that are usually dealt with recommender systems is the
number of items. Here, we deal with a few items (e.g., 10 or 20 algo-
rithms), while recommender systems are applied to problems with a
large number of items (e.g., hundreds or thousands of web pages).

In general, a ranking represents a preference function over a set of
items [6]. Therefore, given a set of n items,

X = (X1, X2, ..., Xn−1, Xn) (1)

we define a ranking as a vector,

R = (R(X1), R(X2), ..., R(Xn−1), R(Xn)) (2)

where R(Xi) (or Ri, for simplicity) is the rank of item Xi and the
item with rank Ri is preferred to item with rank Rj if Ri < Rj [11].
In a metalearning application, the examples are, for instance, classi-
fication or regression (base-level) datasets and the items are learning
algorithms.

To induce a model, it is necessary to have a training dataset con-
taining a description of a set of examples according to a set of m
attributes, (A1, A2, . . . , Am), and the corresponding target ranking,
R (or a vector X with n scores, which can be converted to a ranking).
In the algorithm recommendation problem, the target rankings of the
meta-level dataset (which we will refer to as dataset) are obtained
by estimating the performance of the algorithms, which is usually
done by running them on the base-level datasets (i.e., the learning
tasks which will be represented by the examples for our metalearn-
ing problem). The target rankings of the base-level datasets of Table 1
are given in Table 2.

The generalization ability of ranking methods, i.e., their ability
to accurately predict the target rankings of new examples, can be
estimated using the same strategies that are used for other learning
problems: a sample of the training dataset is used to induce a ranking

Table 2. Target rankings representing the accuracy of four learning
algorithms on the two classification problems of Table 1.

a1 a2 a3 a4

d1 1 3 2 4
d2 2 1 4 3

model; the model is used to predict the rankings of the remaining ex-
amples; the accuracy of the model is estimated by comparing the pre-
dicted rankings to the corresponding target rankings. Here we have
used Leave-one-out Cross Validation, which consists of iteratively,
for each example, computing the accuracy of the prediction made for
the selected example using a model obtained on all the remaining
examples [15].

We have used three measures of ranking accuracy: Spearman’s
Rank Correlation Coefficient, the Weighted Rank Correlation coeffi-
cient and the Log Ranking Accuracy, which are presented below.

3.1 Spearman Coefficient (SC)
Spearman’s rank correlation coefficient, rS , has been proposed in the
early 20th century by Charles Spearman and is given by the expres-
sion:

rS = 1−
6
∑n

i=1
(R(Xi)−R(Yi))

2

n3 − n
(3)

where X and Y are two sets of n values and R(Xi) represents the
rank of element i in the series X . Nothing is assumed about the distri-
bution of values of the variables. The coefficient simply evaluates the
monotonicity of two sets of values, i.e., if their variations are related.
If they tend to increase or decrease together, the variables are posi-
tively correlated. However, if one tends to increase while the other
decreases then they are negatively correlated. This is less restrictive
than other coefficients, such as Pearson’s because it does not assume
that the relationship between the two variables is represented by a
particular type of function [11].

The expression above is valid only if there are no ties (the same
numerical value in two or more observations), although in the case of
a small number of ties it can still be applied (using the average rank
for the tied observations). If the number of ties is very large, then it
is better to use the expression of Pearson’s correlation coefficient of
the two vectors of ranks, as this is an alternative way of finding the
Spearman’s coefficient in all situations.

rS(X, Y) =

∑n

i=1
(R(Xi)− ¯R(Xi))(R(Yi)− ¯R(Yi))√∑n

i=1
(R(Xi)− ¯R(Xi))2

∑n

i=1
(R(Yi)− ¯R(Yi))2

(4)

It is, however, computationally less efficient that the one above.

3.2 Weighted Rank Correlation (rW)
Given a ranking of learning algorithms, it can be expected that the
higher an algorithm is ranked, the higher the probability that it will
be executed by the user. Similar scenarios are expected in other rank-
ing applications. Generally, this is true in ranking problems where the
prediction is only used as a recommendation. Therefore, the evalua-
tion of ranking algorithms should assign greater importance to higher
ranks. However, Spearman’s coefficient treats all ranks equally. An
alternative coefficient is the Weighted Rank Correlation Coefficient
[10, 5]. Let d2

i = (R(Xi)−R(Yi))
2 and

W 2
i = d2

i ((n−R(Xi) + 1) + (n−R(Yi) + 1)) (5)

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 40

The first term of this product d2
i is the quadratic error of rank, exactly

as in rS , and represents the distance between R(Xi) and R(Yi). The
second term weighs the error of rank by the importance of the two
ranks involved R(Xi) and R(Yi). Based on these expressions, the
Weighted Rank Correlation coefficient is defined as:

rW (X, Y) = 1−
6
∑n

i=1
W 2

i

n4 + n3 − n2 − n
(6)

A thorough study of this coefficient is presented in [10].

3.3 Log Ranking Accuracy (LRA)

Another weighted measure of accuracy, that gives even more impor-
tance to higher ranks than rW is the Log Ranking Accuracy [11]:

rlog(X, Y) = 1− 2 ∗
6
∑n

i=1
log1+R(Xi)(1 + R(Xi)− R(Yi))

2)∑n

i=1
log1+i(1 + (i− (n− i + 1))2)

(7)

4 Ranking Trees

One of the advantages of tree-based models is how they can clearly
express information about the problem, because their structure is rel-
atively easy to interpret even for people without a background on
learning algorithms. It is also possible to obtain information about
the importance of the various attributes for the prediction depending
on how close to the root they are used. The Top-Down Induction of
Decision Trees (TDIDT) algorithm is commonly used for induction
of decision trees [9]. It is a recursive partitioning algorithm that iter-
atively splits data into smaller subsets which are increasingly more
homogeneous in terms of the target variable (Figure 1).

It starts by determining the split that optimizes a given splitting cri-
terion. A split is a test on one of the attributes that divides the dataset
into two disjoint subsets. For instance, given a numerical attribute
A2, a split could be A2 ≥ 5. One of the problems with the most
simple version of the TDIDT algorithm is that it only stops when
the nodes are pure, i.e., when the value of the target attribute is the
same for all examples in the node. This usually leads the algorithm to
overfit, i.e., to generate models that fit not only to the patterns in the
data but also to the noise. One approach to address this problem is to
introduce a stopping criterion in the algorithm that tests whether the
best split is significantly improving the quality of the model. If not,
the algorithm stops and returns a leaf node. A leaf node contains the
prediction that will be made for new examples that fall into that node.
This prediction is generated by a rule that solves potential conflicts in
the set of training examples that are in the node. In classification, the
prediction rule is usually the most frequent class among the training
examples. If the stopping criterion is not verified, then the algorithm
is executed recursively for the subsets of the data obtained based on
the best split.

An adaptation of the TDIDT algorithm for the problem of learn-
ing rankings has recently been proposed [14], called Ranking Trees.
This algorithm is based on the Clustering Trees algorithm [2]. The
adaptation of this algorithm for ranking involves a few issues, in-
cluding the splitting criterion, the stopping criterion and the predic-
tion rule. Before discussing these issues, we note that a training ex-
ample in the problem of learning rankings is described using a set
of m attributes (A1, A2, . . . , Am) and is associated with a ranking
(R1, R2, . . . , Rn) as defined in Section 3.

Input: D
Output: Tree model
BestSplit← Test of the attributes that optimizes the splitting
criterion ;
if stopping criterion is TRUE then

Determine the leaf prediction based on the target values of
the examples in D;
Return a leaf node with the corresponding prediction
obtained with the prediction rule;

else
LeftSubtree← TDIDT(DBestSplit) ;
RightSubtree← TDIDT(DBestSplit) ;

end
return (BestSplit, LeftSubtree, RightSubtree);

Figure 1. TDIDT algorithm

4.1 Splitting Criterion

The splitting criterion is a measure that quantifies the quality of a
given partition of the data. It is usually applied to all the possible
splits of the data that can be made based on individual tests of the
attributes.

In Ranking Trees the goal is to obtain leaf nodes that contain ex-
amples with target rankings as similar between themselves as pos-
sible. To assess the similarity between the rankings of a set of train-
ing examples, we compute the mean correlation between them, using
Spearman’s correlation coefficient (Section 3.1). The quality of the
split is given by the weighted mean correlation of the values obtained
for the subsets, where the weight is given by the number of examples
in each subset.

Table 3. Illustration of the splitting criterion

Attribute Condition: True Condition: False
values rank corr. values rank corr.

A1 a 0.3 b, c -0.2
b 0.2 a, c 0.1
c 0.5 a, b 0.2

A2 < 5 -0.1 ≥ 5 0.1

The splitting criterion of ranking trees is illustrated both for nomi-
nal and numerical attributes in Table 3. The nominal attribute A1 has
three values (a, b and c). Therefore, three splits are possible. For the
numerical attribute A2, a split can be made in between every con-
secutive value. In this case, the best split is A1 = c, with a mean
correlation of 0.5 for the training examples that verify the test and a
mean correlation of 0.2 for the remaining, i.e., the training examples
for which A1 = a or A1 = b.

4.2 Stopping Criterion

The stopping criterion is used to determine if it is worthwhile to make
a split or if there is a danger of overfitting. In the original implemen-
tation of Ranking Trees the criterion is not described. Here we define
that a split should only be made if the similarity between examples
in the subsets should increase significantly. Let Sparent be the sim-
ilarity between the examples in the parent node, D, and Ssplit the
weighted mean similarity in the subsets obtained with the best split.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 41

The stopping criterion is defined as follows:

(1 + Sparent) ≥ γ(1 + Ssplit) (8)

Note that the significance of the increase in similarity is controlled
by the parameter γ

4.3 Prediction Rule

The prediction rule is a method to generate a prediction from the
(possibly conflicting) target values of the training examples in a leaf
node. In Ranking Trees, the method that is used to aggregate the rank-
ings that are in the leaves is based on the mean ranks of the items in
the training examples that fall into the corresponding leaf. Table 4
illustrates the prediction rule used in this work.

Table 4. Illustration of the prediction rule, where ei represents training
example i

R1 R2 R3 R4

e1 1 3 2 4
e2 2 1 4 3
Predicted 1 2 3 4

5 Experimental Results

We empirically tested the Ranking Trees algorithm on some rank-
ing problems obtained from metalearning applications. For compari-
son purposes, the k-Nearest Neighbors (KNN) algorithm, which was
previously applied on the same problems was also implemented [4].
Based on the results reported in that work, we used a single neighbor
(k = 1). Additionally, we compared the results with a simple base-
line, the default ranking, which is the mean ranking over all training
examples [4]. The code for all the examples in this paper has been
written in R (www.r-project.org). We also investigate the effect of
varying the value of the γ parameter of the stopping criterion.

The performance of the methods was estimated using leave-one-
out because of the small size of the datasets. Both algorithms were
evaluated using the three ranking accuracy measures described ear-
lier. However, given that the results obtained with Spearman’s corre-
lation coefficient and the Weighted Rank coefficient are similar, we
only present the former.

5.1 Datasets

The data provided to the algorithm for learning rankings consists of
two matrices. The first one contains a set of attributes that describe
the dataset, referred to as metafeatures. In the case of metalearning, it
often contains variables that represent general and statistical proper-
ties of the datasets, such as number of examples and mean correlation
between numerical attributes. The second matrix contains the target
rankings, based on the performance of the algorithms on the datasets.

We used the following meta-learning problems in our experiments:

Classification these data represent the performance of ten algo-
rithms on a set of 57 classification tasks (base-level datasets).
Two sets of metafeatures are used to describe base-level datasets.
The first one is a small set with which KNN has been reported
to achieve good results [4]. The second is a larger set, containing
metafeatures that were used in the StatLog project [7, 3].

Regression these data represent the performance of nine algorithms
on a set of 42 regression tasks (datasets). Also in this case, two
different sets of metafeatures were used. The first one is, again,
a small set with which KNN has been reported to achieve good
results [11]. The second is a larger set that has been been based on
measures proposed in the MetaL project [8].

SVM these data represent the performance of different variants of
the Support Vector Machines algorithm on the same 42 regression
datasets as in the previous set [11]. Five different sets of SVM
variants were considered: in three of them, the sets include the
same set of 11 settings of the σ parameter, and variations are ob-
tained by using different values of the ε parameter of SVM; the
other two contain five and 21 settings of the σ parameter, respec-
tively. Additionally, three sets of metafeatures were used in this
metalearning problem. The first is the MetaL set of metafeatures
for regressions described earlier. The second is a set of SVM-
specific metafeatures [12] and the last is a combination of the two.
In total, we had 5∗3 = 15 different (but related) SVM metalearn-
ing problems.

More information about these meta-datasets can be found in [11].

5.2 Varying the Value of γ

We started by investigating the effect of the stopping criterion pa-
rameter. We tested a few values of γ above and below 1. Note that
values greater than 1 mean that a split can be accepted even if the
child nodes are less homogeneous than the parent node. On these
datasets, using values lower than 0.995 generates trees with a sin-
gle or very few nodes. This happens for values that are very close
to 0.995, such as 0.95. When values larger than 0.995 are used, then
the algorithm quickly overfits, generating trees with almost as many
leaf nodes as examples. Reasonable results were obtained with val-
ues that are quite close to 0.995, as shown in Figure 2. This indicates
that γ = 0.995 is a good choice for the stopping criterion parameter.

Figure 2. Variation of the number of leaves with the value of γ. The values
presented are means over all examples (i.e., base-level datasets) in the

metalearning dataset.

5.3 Comparing Ranking Trees with Other Methods
Comparing ranking trees with the KNN algorithm in terms of Spear-
man’s coefficient (SC), we observe that the latter generally obtains

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 42

better results (Figure 3), except in the regression problem and in the
SVM problems using the combination of the two types of metafea-
tures. The results of ranking trees may be explained with the small
size of the dataset, which makes the induction of a model with good
generalization ability very hard. This is also supported by previous
results, in which the use of KNN on these problems with larger values
of k leads to worse results [11]. On the other hand, these results are
somewhat contradictory with a previous comparison between rank-
ing trees and KNN, in which better accuracy is reported for the for-
mer algorithm [14]. This difference may be explained by the different
experimental setup that is used. However, we note that a larger num-
ber of datasets was considered here.

Comparing ranking trees with the default ranking indicates that the
former method is not able to predict the ranking of algorithms on new
datasets very accurately. However, the observation for KNN is not
very different except on a few cases. We note that the metalearning
is a very difficult problem, especially taking into account that the
datasets are small.

Figure 3. Comparison of the ranking accuracy measured with the
Spearman’s coefficient, obtained by Ranking Trees (γ = 0.995), the KNN

algorithm and the default ranking baseline. The first four points represent the
classification and regression datasets, respectively (two different sets of

metafeatures each). Each of the following three sets of five points, represents
the combination of the three sets of metafeatures with the five SVM

problems.

Similar observations can be made from the results in terms of the
LRA measure (Figure 4). However, according to this measure, the
curves of the three methods seem to be closer, which indicates that
the difference between the methods is smaller when higher impor-
tance is given to the top ranks.

6 Conclusions
In this paper, we address a somewhat uncommon recommendation
problem, which is the recommendation of learning algorithms. We
follow a metalearning approach, in which a learning algorithm is
used to generate models that relate the characteristics of a (base-
level) dataset to the performance of the algorithms. The goal of this
work is to empirically evaluate ranking trees on some metalearning
problems.

We started by choosing a value for the stopping criterion of rank-
ing trees. Our choice of γ = 0.995 was based on the number of nodes
generated. Smaller values of γ will generally lead to trees with a sin-
gle node. On the other hand, for γ > 1 the number of leaves is close

Figure 4. Comparison of the ranking accuracy measured with the Log
Ranking Accuracy measure, obtained by Ranking Trees (γ = 0.995), the

KNN algorithm and the default ranking baseline. The order of the
metalearning problems is explained in Figure 3.

to the number of examples of the datasets, indicating that there is
overfitting.

We compared ranking trees with the k-Nearest Neighbors (KNN)
algorithm, which was previously applied on the same problems, and
a baseline method. In our experiments, ranking trees did not gener-
ally outperform KNN. These results are in contradiction with earlier
results [14], which may be explained with the different experimental
setup used in those experiments. Additionally, we note that the dif-
ficulty of obtaining a ranking tree with a good generalization ability
may be explained by the small number of examples in the datasets. It
is, thus, necessary to test the methods on larger datasets.

Evaluating the results solely in terms of ranking accuracy is insuf-
ficient because, from the point of view of the user of the algorithm
recommendation model, the goal is to obtain a model with a per-
formance (value) as good as possible on his/her dataset with as less
computational effort (cost) as possible. Therefore, it is necessary to
evaluate the results in terms of the cost/benefit compromise that can
be obtained by executing a varying number of algorithms [4].

Concerning the algorithm presented here, we plan to evaluate al-
ternative splitting criteria, prediction rules and stopping criteria. In
terms of the splitting criterion, we will test measures of similarity
that give more importance to the top ranks, such as the ones used to
assess ranking accuracy in this work.

Finally, we plan to test the method on different ranking prob-
lems. In particular, we plan to carry out experiments on meta-
recommendation, i.e., using ranking trees and other ranking algo-
rithms on the problem of recommending recommender systems. A
similar problem is addressed by the AWESOME system, which dy-
namically chooses recommender models for a website [13].

ACKNOWLEDGEMENTS
This work was partially supported by project Rank!, funded by
Fundação para a Ciência e Tecnologia (PTDC/EIA/81178/2006).

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin, ‘Toward the next

generation of recommender systems: A survey of the state-of-the-art
and possible extensions’, IEEE Trans. on Knowl. and Data Eng., 17(6),
734–749, (2005).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 43

[2] Hendrik Blockeel, Luc De Raedt, and Jan Ramon, ‘Top-down induction
of clustering trees’, in ICML ’98: Proceedings of the Fifteenth Interna-
tional Conference on Machine Learning, pp. 55–63, San Francisco, CA,
USA, (1998). Morgan Kaufmann Publishers Inc.

[3] P. Brazdil, J. Gama, and B. Henery, ‘Characterizing the applicability
of classification algorithms using meta-level learning’, in Proceedings
of the European Conference on Machine Learning (ECML94), eds.,
F. Bergadano and L. de Raedt, pp. 83–102. Springer-Verlag, (1994).

[4] Pavel B. Brazdil, Carlos Soares, and Joaquim Pinto Da Costa, ‘Ranking
learning algorithms: Using IBL and meta-learning on accuracy and time
results’, Mach. Learn., 50(3), 251–277, (2003).

[5] J. Pinto da Costa and L. Roque, ‘Limit distribution for the weighted
rank correlation coefficient, rw’, REVSTAT - Statistical Journal, 4(3),
(2006).

[6] Johannes Fürnkranz and Eyke Hüllermeier, ‘Preference learning’,
Künstliche Intelligenz, 19(1), 60–61, (2005).

[7] R.J. Henery, ‘Methods for comparison’, in Machine Learning, Neural
and Statistical Classification, eds., D. Michie, D.J. Spiegelhalter, and
C.C. Taylor, chapter 7, 107–124, Ellis Horwood, (1994).

[8] C. Köpf, C. Tayllor, and J. Keller, ‘Meta-analysis: From data char-
acterization for meta-learning to meta-regression’, in Proceedings of
the PKDD2000 Workshop on Data Mining, Decision Support, Meta-
Learning and ILP: Forum for Practical Problem Presentation and
Prospective Solutions, eds., P. Brazdil and A. Jorge, pp. 15–26, (2000).

[9] Thomas M. Mitchell, Machine Learning, McGraw-Hill Higher Educa-
tion, 1997.

[10] Joaquim Pinto da Costa and Carlos Soares, ‘A weighted rank measure
of correlation’, Australian & New Zealand Journal of Statistics, 47(4),
515–529, (2005).

[11] Carlos Soares, Learning Rankings of Learning Algorithms, Ph.D. dis-
sertation, Department of Computer Science, Faculty of Sciences, Uni-
versity of Porto, 2004. Supervisors: Pavel Brazdil and Joaquim Pinto
da Costa.

[12] Carlos Soares and Pavel Brazdil, ‘Selecting parameters of SVM us-
ing meta-learning and kernel matrix-based meta-features.’, in SAC, pp.
564–568, (2006).

[13] Andreas Thor and Erhard Rahm, ‘AWESOME: a data warehouse-based
system for adaptive website recommendations’, in VLDB ’04: Proceed-
ings of the Thirtieth international conference on Very large data bases,
pp. 384–395. VLDB Endowment, (2004).

[14] Ljupco Todorovski, Hendrik Blockeel, and Saso Dzeroski, ‘Ranking
with predictive clustering trees’, in ECML ’02: Proceedings of the 13th
European Conference on Machine Learning, pp. 444–455, London,
UK, (2002). Springer-Verlag.

[15] Ian H. Witten and Eibe Frank, Data mining: practical machine learn-
ing tools and techniques with Java implementations, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2000.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 44

Recommender Systems for Lifelong Learning
inclusive scenarios
Olga C. Santos1 and Jesus G. Boticario1

Abstract. 1Lifelong learning scenarios have particular differences
in their need for personalised recommendations that make not
possible reusing existing general approaches of recommender
systems. Moreover, in the former scenarios, inclusive approaches
are even more critical than in the later. This situation poses several
challenges to be addressed by the new trend of recommender
systems for lifelong learning. The paper describes those
challenges and presents a hybrid proposal that combines different
recommendation techniques.

1 INTRODUCTION
The Lifelong Learning (LLL) paradigm supports the idea that
learning should occur throughout a person’s lifetime [1]. This
paradigm promotes a user-centred approach that removes social,
physical and cognitive barriers, where dynamic support may foster
attitudes and skills to improve the effectiveness of the learning
process. In mediating this process, technology is playing an
important role. In this sense, a dynamic support that recommends
learners what to do to achieve their learning goals is desirable.

Traditionally, Intelligent Tutoring Systems (ITS) intend to
provide direct customized instruction to students by finding the
mismatches between the knowledge of the expert and the actions
that reflect the assimilation of that knowledge by the student [2].
Their main limitations are: 1) ITS are specific of the domain for
which they have been designed (since they have to be provided
with the expert knowledge) and 2) it is unrealistic to think that it is
possible to code in a system all the possible responses to cover the
specific needs of each student at any situation of the course.

Our approach (defined at aLFanet project as the combination of
design and run time adaptations throughout a pervasive usage of
standards to allow for knowledge interoperability [3]) draws partly
on the ITS ideas but leaves the knowledge information outside the
system. Firstly, our approach benefits from recent educational
specifications such as IMS Learning Design (IMS-LD) [4] that
allows defining the instructional design of any type of course with
any pedagogical theory. In this way, at design time it is possible to
describe the course from its structural information (learning
objectives, activities, services and resources and the relationships
among them and for different user profiles). Secondly, the users’
behaviour in the course is monitored at runtime to identify
troublesome (i.e., lack of knowledge) and promising situations
(i.e., high interest), and perform remediation or support actions by
applying recommendation strategies. The design in terms of IMS-
LD provides a detailed model of the course structure and context
(mainly in terms of the learning objectives being worked) that is
useful for selecting the appropriate recommendations.
Furthermore, our approach is pedagogy neutral and has been
applied in different learning scenarios [3].

1 aDeNu Research Group, Artificial Intelligence Department, Computer

Science School, UNED, c/Juan del Rosal, 16. 28040 Madrid, Spain
{ocsantos,jgb}@dia.uned.es

In this paper, we present a hybrid approach to recommendative
support in LLL inclusive scenarios which is based on a multi-agent
architecture.

2 RS AND LLL INCLUSIVE SCENARIOS
Recommender systems (RS) support users in finding their way
through the possibilities offered in web-based settings by pre-
selecting information a user might be interested in. However, there
are several distinct differences for recommendations to consumer
products (e.g. music, news or movies) in contrast to
recommendations to be provided to learners, which are translated
into specific demands for these systems. In particular,
recommender systems in LLL need to improve the learning
effectiveness and do not depend just on the user’s tastes. For
instance, the preferred activity by a learner might not be
pedagogically adequate [5].

Moreover, unlike for customer products, learners are not so
motivated in rating each content they read or every activity they do.
Implicit ways of getting this information have to be used. In turn, it
is more likely that explicit information can be filled in advance,
since it can be presented to the user as mandatory tasks to be done
as part of the course requirements. For instance, learners can be
asked 1) to fill in some information about their learning styles, their
technological level and their accessibility preferences as part of the
process for signing up in the learning management system (LMS)
of the institution, and 2) to carry out some tests (e.g. on their
previous knowledge on the course contents, their learning goals and
interests) as part of the course activities.

Professors are also used to design activities and contents for
different types of learners’ needs, and can annotate them with
metadata, provided that this extra workload is not disproportionate.
This extra workload allows also for future reusability, which in the
whole reduces the professor’s workload.

Research works argue that memory-based recommendation
techniques are the most adequate for RS in technology-enhanced
learning settings [6], where LLL scenarios are deployed. In
particular, collaborative filtering techniques [7-9] such as user-
based (users that rated the same item similarly probably have the
same taste), item-based (items rated similarly by users are probably
similar) and stereotypes or demographics collaborative filtering
(users with similar attributes are matched), and content-based
techniques [10-12] such as case-base reasoning (if a user likes a
certain item, she will probably like similar items in terms of the
attributes they own), and attribute-based techniques (matching of
item attributes to the user profile) are applicable. From those two
types of techniques, several studies demonstrate the superiority of
hybrid techniques (cascading, weighting, mixing, switching) [13-
16]. In hybrid approaches collaborative- (or social-) based filtering
(specially user-based and item-based techniques) are combined
with content- (or information-) based filtering. If the former can be
applied, learners benefit from the experience of others.

To cope with inclusiveness, dynamic support is also required to
complement the universal design approach. Learners experience a
disability when there is a mismatch between the learners’ needs (or

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 45

preferences) and the education or learning experience delivered
[17]. Thus, the system should take into account the preferences of
the learners and the device capabilities when interacting with the
system, and map them to specific content features. In particular,
those related to the display, control and selection of learning
content, so that alternative contents can be provided. For instance,
small scale evaluations in ALPE project (eTen-2005-029328)
showed that although adaptation of eLearning contents had been
done at design time to suit the needs of users’ with disabilities and
adult learners, the provision of some dynamic support would have
improved the learning performance and the user satisfaction [17].

3 RECOMMENDING STRATEGIES FOR LLL
In this section we present the key issues of our proposal
(summarized in Fig. 1). In their definition, we have taken into
account 1) the structural information of the course available in the
IMS-LD (which allows to know at run time the course context in
which the learner is at any time), 2) the user model information, 3)
the particularities for LLL identified in the previous section, and
4) the characteristics of the different recommendation techniques.

1. Instead of top-down approaches from traditional
knowledge-based RS where pedagogical knowledge is

considered during the design of the system, a bottom-up
approach can be used to provide pedagogical flexibility.
This flexibility can be obtained by using domain
independent techniques (which require no content
analysis). The recommendation strategy decides
internally the final recommendations, taking into account
psycho-educational rules and learning strategies [6]. For
instance, recommendations proposed by a collaborative-
based technique can be checked to see if they fit with the
learning style of the user. The course context and the
user’s features are required for this filtering process.

2. The professor should be able to specify generic
recommendations to be applied in the course in terms of
conditions on the user attributes and the course context.

3. Recommendations can be provided when no behaviour
data exists. The ‘cold start’ problem (i.e. initial data set
required) typical of collaborative approaches is avoided
since it is expected that learners have provided basic
information about their profile and that course contents
are annotated by the course authors when designing the
course. In this way, stereotypes and attribute-based
techniques can be applied when new users enrol and new
items are provided, respectively.

Fig. 1. Proposal for combining recommending techniques in LLL inclusive scenarios

4. Since demographic similarity and case-based reasoning

are applied, not only popular items are recommended,
but also those dependent on the user’s preferences and
her personal features. In this way, the sparsity problem
(i.e. less recommendations for learners with unusual
taste) is overcome.

5. Sparsity can also be reduced by combining past
behaviour and users’ features when computing the
similarity measure [18].

6. Prioritized user-profile approaches can be used to
implement more personalized recommendations by
assigning different priority importance to each of the
features of the user-profile [19]. This can be useful

because the importance of each feature of a user-profile
is not the same for all users.

7. Case-based reasoning can be applied when information
about other users is not available. Moreover, case-based
reasoning is limited to a pool of items that are similar to
items the user knows. That is usually a limitation in RS
for consumer products, but can turn into useful in LLL.
For instance, when a learner wants to reach a higher
competence level for a learning objective, it may require
repeating some tasks till the competence is achieved [6].

8. Being recommended similar items to the ones preferred
in the past is therefore useful, and applies to both
situations, ‘lack of knowledge’ and ‘high interest’ [3].

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 46

9. Instead of requesting explicit ratings, positive ratings
(those that have improved the learners’ knowledge
level) can be inferred from the user’s interactions. For
instance, if the learner’s knowledge level in certain
objective has increased after accessing an item that is
associated to that objective.

10. When large amount of data are available to produce
social recommendations, the learners can benefit from
the experience of other successful learners. This allows
learners to discover preferable items by serendipity.

11. If the number of potential similar users is large, data
clustering to find densely populated groups of users with
close similarities [5] or detecting active users [19] can
be applied to scale down the candidate sets and also to
guide collaborative filtering into a more focused space.

12. Inclusiveness can be supported provided that the user
fills in her accessibility preferences and the professor
annotates the accessibility features of items. By
matching user preferences and items features, functional
diversity issues are addressed.

13. Moreover, rule based reasoning can be applied with
current specifications and standards. In particular, the
IMS Learner Information Package combined with the
IMS Metadata, and its extension for accessibility, the
IMS-AccessForAll specification [4] (and the
corresponding ISO/IEC JTC1 standard on Individualised
Adaptability and Accessibility Learning, Education and
Training -24751 under definition).

14. The quality of the recommendations improves over time.
On the one hand, the user model attributes (filled in
initially by the user) can be updated taking into account
the behaviour of the user, producing a more accurate
model along time which is used for demographic

similarity and attributes matching. On the other hand,
techniques based on user actions improve with the
number of actions recorded (i.e more time, more actions).

15. Preliminary results suggest that recommendations can be
grouped into different types, and some types are more
effective than others for increasing the learning
performance depending on the course situation [20].

4 THE MULTI-AGENT APPROACH FOR A
HYBRID RECOMMENDER SYSTEM IN LLL
Since there are different recommending techniques, and each
technique is more suitable in some situation than in others, we have
proposed a multi-agent architecture where each agent can
implement one of the recommendation techniques [3, 17]. The
process works as follows (Fig. 2). The learner is using the LMS and
before presenting some information to the user, the LMS asks a
recommender service for available recommendations for the user.
This RS service calls the multi-agent system where a coordinator
agent activates the recommender agents. These recommender
agents try to produce some recommendations adapted to the current
user (needs and preferences stored in her model) and her context
(passed in the request). From the recommendations produced by the
recommender agents, the coordinator agent selects the appropriate
ones and prioritizes them. The reason for this is that it may not be
appropriate to show the whole list of available recommendations to
the user, especially if the screen size of the device used is small or
the user prefers a large font size to see the contents. Therefore, the
potential recommendations for a learner in the current situation are
prioritized to allow selecting the top ones with greater relevance.
The number of selected recommendations depends on the device
capabilities and the accessibility preferences.

Fig. 2. Components involved in the generation of the recommendations for the LMS

The prioritising algorithm has to be tuned with the experience.
However, we have started with the following criteria. First, it
should select among contradictory recommendations. Second, it
should give more priority to duplicated recommendations (i.e.
equal recommendations generated by different agents). Next, it
should consider the generic static recommendations. Finally, it
should pay attention that recommendations are homogenously
distributed by their type. Each of the above recommender agents
can implement a different recommendation technique, as follows:
• Agent1: Select those static generic recommendations that

match the conditions Suitable recommendations from those
defined by the professor for the course (Items suggested by the
professor).

• Agent2: User-based collaborative filtering (user similarity
from ratings) Recommends positive rated items from
similar learners (by ratings) (Popular items by alike users)

• Agent3: Item-based collaborative filtering (items rated
similarly) Recommends high-correlated items (sharing
positive ratings from similar users) to user positive rated items
(Items as popular as liked by user).

• Agent4: Demographic collaborative filtering (user similarity
from attributes) Recommends positive rated items from
similar learners (by attributes) (User preferred items).

• Agent5: Combines user ratings and attributes to compute the
similarity Recommends positive rated items from similar
learners (ratings and attributes) (Popular preferred items).

• Agent6 Case-based reasoning (similar items to previous
ones) Recommends high-correlated items (in terms of
attributes) to user liked items (Items similar to liked by user).

• Agent7: Attribute-based rules (IMS/ISO matching rules)
Matching items to user model (Items defined in the course
design).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 47

5 ON GOING WORKS
Current developments have focused on providing the
infrastructure for the RS to allow offering recommendations in the
LMS user interface. An initial prototype has been integrated in
OpenACS/dotLRN LMS [21]. Recommendations consist on links
to actions to perform in the LMS, such as offering help,
suggesting to post a message in the forum, recommending the
reading of a particular resource of the course.

So far, we have implemented the selection of the generic
recommendations and carried out some initial experiments to find
out if there are different factors that affect the learning
performance and if they are dependent on the course situation.
Preliminary results considering three situations (familiarization
with the platform, familiarization with the operative approach of
the course and the course itself) have shown that not all types of
recommendations have the same relevance in all the situations
[20]. In that experiment, different types of recommendations were
given at each of the situations of the course. Comparing the
performance with a group of students who were not given
recommendations, the result was that the learners’ performance
has been increased. We are currently automatizing the process of
results gathering to allow a bigger size for the sample and run
experiments with a large population of learners, which will allow
us better validate the proposal. In parallel, we are also
implementing the combination of recommending techniques, as
illustrated in Fig. 2.

6 CONCLUSIONS
Lifelong learning inclusive scenarios have particular differences in
their need for personalized recommendations. This poses several
challenges to be addressed by the new trend of recommender
systems for LLL. In the paper we have analysed those challenges
and proposed a way to combing memory-based recommender
systems technologies to address these particularities. In particular,
i) pedagogically guided instead of just by learners’ taste, ii) not
explicit ratings after each user action, iii) initial user profile
available, iv) existing items annotation that match user profile, and
v) matching of accessibility preferences and device capabilities.

The approach is based on pre-filled and pre-designed
information at the beginning, when runtime information is not
available and as interactions are produced, recommendations relay
on more flexible and learnable techniques, which make learners
benefit from the experience of other successful learners. Thus, if
there is not enough information about items that were used in the
past by similar learners (e.g. community driven information is not
possible), sparsity and scalability problems can be avoided by
switching to recommending similar items to the ones the learner
preferred in the past (e.g. individual information). If users have
filled in the attributes of their user model, then stereotypes
(demographic collaborative filtering) can also be provided when
the other collaborative-based techniques are not applicable and
avoid the ‘cold-start’ problem. If explicit matching of item
attributes to user profiles has been done, attribute based techniques
can also avoid the ‘cold-start’ problem.

In implementing the approach, we have chosen a multi-agent
architecture for its flexibility in combining different
recommendation techniques. Preliminary experiments have been
done applying generic recommendations (matching conditions
defined by the professor) to an on-line course. A three layer
evaluation process will be applied in future experiments.

REFERENCES
[1] Longworth, N. Lifelong learning in action – Transforming education

in the 21st century. Kogan page (2003).
[2] Sleeman, D., Brown, J. S. Introduction: Intelligent Tutoring Systems.

In D. Sleeman, J. S. Brown (Eds.), Intelligent Tutoring Systems (pp.
1-11). New York: Academic Press (1982).

[3] Boticario, J.G., Santos, O.C. An open IMS-based user modelling
approach for developing adaptive learning management systems.
Journal of Interactive Media in Education (JIME) September (2007)

[4] IMS Global Learning Consortium set of specifications. Available at:
http://www.imsglobal.org/.

[5] Tang, T. and McCalla, G. Smart Recommendation for an Evolving E-
Learning System. Workshop on Technologies for Electronic
Documents for Supporting Learning, International Conference on
Artificial Intelligence in Education (2003).

[6] Drachsler, H., Hummel, H. G. K., and Koper, R. Recommendations
for learners are different: Applying memory-based recommender
system techniques to lifelong learning. Proceedings of Workshop on
Social Information Retrieval for Technology-Enhanced Learning, 2nd
European Conference on Technology Enhanced Learning (2007).

[7] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J.
GroupLens: An open architecture for collaborative filtering of
netnews. In Proc. of the ACM Conf. on Computer Supported
Cooperative Work. ACM (1994) 175-186.

[8] Shardanand, U., Maes, P. Social information filtering: Algorithms for
automating 'word of mount'. In Proc. SIGCHI Conf. on Human Factors
in Computing Systems (1995). 210-217

[9] Breese, J.S., Heckerman, D., and Kadie, C. Empirical analysis of
predictive algorithms for collaborative filtering. In Proc. of the 14th
Conf. on Uncertainty in Artificial Intelligence. (1998) 43-52

[10] Lang, K. NewsWeeder: Learning to filter netnews. In Proc. of 12th
Int'l Conf. on Machine Learning. (1995) 331-339.

[11] Pazzani, M.J., Muramatsu, J., and Billsus, D. Syskill & Webert:
Identifying interesting web sites. In Proc. of the 13th Nat. Conf. on
Artificial Intelligence and 8th Innovative Applications of Artificial
Intelligence Conf. AAAI Press/MIT Press (1996) 54-61.

[12] Mooney, R.J., Bennett, P.N., and Roy, L. Book recommending using
text categorization with extracted information. In Proc. of the AAAI
Workshop on Recommender Systems , AAAI Press, p. 70-74 (1998).

[13] Setten, M. Supporting People In Finding Information: Hybrid
Recommender Systems and Goal-Based Structuring. Telematica
Instituut Fundamental Research Series, vol. 016, (2005)

[14] Burke, R. Hybrid recommender systems: survey and experiments.
User Modeling and User-Adapted Interaction 12, 331-370 (2002).

[15] Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B.,
Herlocker, J., Riedl, J. Combining collaborative filtering with personal
agents for better recommendations. Proceedings AAAI99, 439-446
(1999).

[16] Melville, P., Mooney, R.J., Nagarajan, R. Content-boosted
collaborative filtering for improved recommendations. 18th National
Conf.on Artificial Intelligence, 187-192 (2002).

[17] Santos, O.C., Boticario, J.G. Recommendations for providing
dynamic inclusive learning. Proceedings of the 8th IEEE International
Conference on Advanced Learning Technologies in press).

[18] Pazzani, M.J. A framework for collaborative, content-based and
demographic filtering. Artificial Intelligence Review 13, 393-408
(1999).

[19] Rad, H.S, Lucas, C. On the Effectiveness of Prioritized User-Profile
and Detecting Active Users in Collaborative Filtering Recommender
Systems. WPRSIUI Workshop, ICDE 2007,(2007) 863 – 870.

[20] Santos, O.C., Boticario, J.G. Recommendation strategiews for
promoting eLearning performance factors for all. Workshop Intelligent
Techniques for Web Personalization & Recommender Systems in
AAAI 2008 (in press).

[21] Santos, O.C., Raffenne, E, Granado, J. and Boticario, J.G. Dynamic
support in OpenACS/dotLRN: Technological infrastructure for
providing dynamic recommendations for all in open and standard-
based LMS. Proceedings of the International Conference and
Workshops on Community based environments (2008).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 48

Help-Desk Agent Recommendation System
Based on Three-Layered User Profile
YongBin Kang1 and Arkady Zaslavsky2 and Shonali Krishnaswamy3

Abstract. This paper proposes a novel approach for recommending
a help-desk agent that may appropriately handle problems requested
by clients. First, we identify a key problem of high tendency to de-
pend on help-desk agent when dealing with a problem. To solve this
problem, we present a three-layered user profile with a new concept
of role information of users. Then, we emphasize how our new rec-
ommendation strategy is working based on the user profile, partic-
ularly using the individual/role information in the user profile. We
finally demonstrate how our approach works with an example.

1 INTRODUCTION

The main role of help-desk agent (HDAgent) is to behave as a front-
line interface to solve a service-call by utilizing accumulated knowl-
edge and learned experience. A key problem of service management
in help-desks lies in the high dependency on HDAgent when solv-
ing a service-call. The problem may cause two negative situations:
inconsistencyandunreliability. More specifically, retrieved solution
may be inconsistent according to which a particular HDAgent han-
dled the given service-call. In addition, according to different HDA-
gents, suggested solutions may be reliable or not. For example, if a
novice HDAgent that may not have enough domain knowledge or
experience solves a service call, it would not be guaranteed whether
the solution from that HDAgent is appropriate or not. In both cases,
these problems can be naturally linked to negative effects to the help-
desk organization, such as the loss of the confidence and satisfaction
of the clients [9].

A practical research area designed to address the issued problem
can be found in application using Case-based Reasoning (CBR) ap-
proach [5, 15]. A key concern of CBR is how to design aretrieval
functionto generate possible solutions to a given service-call. How-
ever, one common weakness of CBR lies in that such function is
usually derived by considering only limited two spaces, i.e., service-
call and case space. Therefore, that issued problem (i.e., high depen-
dency on HDAgent) still remains unsolved due to the ignorance of
the inclusion of the HDAgent knowledge. To address the issue, this
paper aims to present a new recommender system that recommends a
HDAgent that may adequately handle a given service-call. In partic-
ular, we focus on designing a user profile that may represent enough
information of users involved in help-desk domains and developing
a new hybrid recommendation strategy based on that user profile.

1 Caulfield School of IT, Monash University, Australia, email: yong-
bin.kang@infotech.monash.edu.au

2 Caulfield School of IT, Monash University, Australia, email:
arkady.zaslavsky@infotech.monash.edu.au

3 Caulfield School of IT, Monash University, Australia, email:
shonali.krishnaswamy@infotech.monash.edu.au

This paper is organized as follows. In the next section, we discuss
the proposed user profile in detail. Section 3 presents the proposed
recommendation process and Section 4 shows a demonstration. We
review related work in Section 5, followed by the conclusion.

2 THREE-LAYERED USER PROFILE

Our user profile is designed as an uniform profile that may repre-
sent enough knowledge of both the client and HDAgent. The basic
intuition used here is that personalized information of the client and
HDAgent can be uniquely decided on the following combination of
three layers, which is motivated by the work [1]:factual information,
domain-specific problem features, andtransactional informationof
interactions between the clients and HDAgents. The main differences
between the profile proposed in [1] and our profile are that the for-
mer model is mainly designed for capturing “purchasing behaviors of
individuals” in e-commerce application, while the latter generalizes
the former idea into the ITSM domain. In addition, the new concept
of role is deployed into our user profile.

The first layer represents factual information that consists of four
components, such as user identity, company description, role charac-
teristics, and role category (see Table 1). The first two components
represent domain-independent user information, which are initially
generated by combining explicit user input and stereotypes. Therole
characteristicsfeature a set of important components of theroles
(i.e., the task functions or positions of individual or a target group of
users [16]) in the client company or help-desk organization. The main
reason for defining the role characteristics is to identify the same or
similar characteristics of the users, and to set a basis for utilizing both
the individual and role information. Thus, it enables that user pro-
filing might be individual or group-based [6]. These characteristics
may be differently defined according to different industrial domains
using various attributes carefully decided by the domain experts. In
this work, some potential characteristics are identified that may ad-
dress unique roles of the both client and HDAgent. This is consistent
with our literature review in [9, 4, 13] as seen in Table 1. The goal
of derivingrole categoryis to provide better information to both the
client and HDAgent when handling the service-call by classifying the
role of the user based on the role characteristics. The role category
is calculated using fuzzy logic which provides a human-like mecha-
nism to imitate human decision that can be used to reason and aggre-
gate strategy to reach optimal decisions [10]. Fuzzy logic has proved
to be quite useful for developing many practical applications which
need to enhance the capabilities of industrial automation due to its
intelligent ability to formalize and manage inexact and vague infor-
mation [13]. Having motivated the benefits of using fuzzy logic, the
role characteristics are used for generating membership functions in

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 49

our fuzzy model, and our system assigns pre-defined role categories
to users according to corresponding membership values using fuzzy
logic. Each characteristic is defined by a membership function which
helps to take the crisp input values, and transformed into certain de-
grees of membership (see also Fig. 1).

poor, average, good
Performance

Satisfaction
Evaluation

alone, ordinary,

positive, cooperative
Attitude

novice, medium,

senior, expert
Skill

low, medium, fastIT Speed

Proficiency

low, moderate,

extensive

Previous

Experience

novice, medium,

senior, expert

Current

Experience
Experience

low, medium, highTraining

low, medium, high
Domain

KnowledgeKnowledge

IT_General,

IT_Operation,

IT_Expert

Task

Function

school, college,

graduate, professional
Education

young, middle, oldAge

Demographic

FUZZY SET
ROLE

CHARACTERISTICS
TYPES

poor, average, good
Performance

Satisfaction
Evaluation

alone, ordinary,

positive, cooperative
Attitude

novice, medium,

senior, expert
Skill

low, medium, fastIT Speed

Proficiency

low, moderate,

extensive

Previous

Experience

novice, medium,

senior, expert

Current

Experience
Experience

low, medium, highTraining

low, medium, high
Domain

KnowledgeKnowledge

IT_General,

IT_Operation,

IT_Expert

Task

Function

school, college,

graduate, professional
Education

young, middle, oldAge

Demographic

FUZZY SET
ROLE

CHARACTERISTICS
TYPES

 (a) (b)

R4AveragePositiveHighMediumModerateNoviceHighLowIT OperationCollegeYoung

R3GoodCooperativeLowFastExtensiveMediumLowMediumIT GeneralProfessionalOld

R2PoorPositiveHighFastExtensiveSeniorHighHighIT ExpertGraduateOld

R1AverageOrdinaryMediumMediumModerateMediumMediumMediumIT OperationCollegeMiddle

R0PoorAloneNoviceLowLowNoviceLowLowIT GeneralSchoolYoung

Role

Category

Performance

Satisfaction
AttitudeSkillIT Speed

Previous

Experience

Current

Experience
Training

Domain

Knowledge

Task

Function
EducationAge

R4AveragePositiveHighMediumModerateNoviceHighLowIT OperationCollegeYoung

R3GoodCooperativeLowFastExtensiveMediumLowMediumIT GeneralProfessionalOld

R2PoorPositiveHighFastExtensiveSeniorHighHighIT ExpertGraduateOld

R1AverageOrdinaryMediumMediumModerateMediumMediumMediumIT OperationCollegeMiddle

R0PoorAloneNoviceLowLowNoviceLowLowIT GeneralSchoolYoung

Role

Category

Performance

Satisfaction
AttitudeSkillIT Speed

Previous

Experience

Current

Experience
Training

Domain

Knowledge

Task

Function
EducationAge

(c)

Figure 1. (a) shows the role types, the role characteristics, and how the
role categorization is performed by defining fuzzy set for the role

characteristics. Two sample membership functions for input (education) and
output (category) using fuzzy logic are shown in (b), and some sample of

fuzzy rules are seen in (c).

The second layer of the user profile denotes preferential informa-
tion which represents the domain-specific feature of the problems
(service-calls) encountered, closely related to a particular individual
user or his/her role. Namely, this layer particularly reveals the rea-
sons about how/why the user is deeply related to particular types of
problems. As seen in Table 1, each problem is composed of problem
identity, problem class (either problem taxonomy or troubleshoot-
ing option), a composition of attributes which may represent the
main characteristics of the problem well enough, relevance weights
of these attributes, and relevance weight of each problem indicat-
ing its relative importance among all the problems in this layer. The
number of components in the second layer corresponds to the num-
ber of possible problems that have been encountered. Besides, as the
client interacts with HDAgents, the second layer’s components are
increased, aggregated, and updated with the change of the transac-
tional information in the third layer.

The third layer of the user profile maintains transactional infor-
mation about how the problems have been handled by certain HDA-
gents. As seen in Table 1, a single transaction consists of HDAgent
identity that solve the given problem, case identity which contains
retrieved solutions by this HDAgent, a set of problem identities that
are closely related to the solutions in the case identity, and a set of di-
agnosed problem features, and appropriateness component. The ap-
propriateness component indicates an appropriateness value of the
given case for the involved problem identities, which is evaluated
by the feedback from the client or HDAgent. Namely, it represents
how much the given case is adequate to the related problems. This
component is used to update the value of ‘performance satisfaction’
component in the first layer, and thus also to contribute to updating

Table 1. The proposed three-layered user file structure.

LAYER TYPE COMPONENT
FIRST User Client / HDAgent ID
LAYER Identity Name

Company Affiliation
Description Location

Employee Numbers
Software in Use

Role Demographic Age
Characteristics Education

Task Function
Knowledge Domain Knowledge

Training
Experience Current Experience

Previous Experience
Proficiency IT Speed

Skill
(Problem-Solving) Attitude

Evaluation Performance Satisfaction
Role Category Classified Role
Problems (≥ 1) Problem ID

SECOND Problem Class
LAYER Attribute ID Attribute Type(Keyword| QA)

Attribute Name
Relevance in Problem (%)

Relevance over Overall Problem (%)
Case Solved (≥ 1) Case ID

THIRD HDAgent ID solved the given problem
LAYER Problem Identities (≥ 1)

Diagnosed-Attributes Sequence
Appropriateness(%)

the ‘role category’ in that layer according to the increased number of
the transactions. Moreover, whenever a new transaction occurs, this
new record will be used to update the corresponding instance(s) of
related problems in the second layer. Further, once the first layer is
created by user explicit input or stereotypes, the whole body of the
user profile is automatically built up in an unobtrusive way without
extra burdening of both the client and HDAgent by observing the
transaction information in the third layer.

3 RECOMMENDATION STRATEGY

This section describes our recommendation strategy that recom-
mends a HDAgent who may appropriately handle a given problem,
based on the proposed user profile. This strategy is composed of the
following major three steps.

3.1 Weighting Computation Based on Client’s Own
Experience

Given a problem by a particular client, we calculate the weighting
function of relevant HDAgents’ role for the client based on their
problem-solving experience. More precisely, to compute this weight-
ing, we use the information about the frequencies of the retrieved
cases and whose appropriateness values. Such information can be
found in the third layer of the user profile. In other words, this
weighting indicates how frequently a particular HDAgent have han-
dled the problems given by the client and how appropriate the re-
trieved solutions suggested by the HDAgent are. The key idea be-
hind this step is to mimic the paradigm of content-based filtering [3].
Namely, we compute the weighting on the basis of the assumption
that the more a HDAgent’s role is experienced in solving the prob-
lems given by the client, the better the HDAgent’s role will solve a
problem given by the client appropriately in the future.

Formally, letCR andSR be the roles of the entities, clientsC
and HDAgentsS, respectively, and then the weighting functionW1

is conceptually expressed by the correlation betweenC andSR as:
W1 : C × SR → Weightings. The weighting functionW1(c, sr)

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 50

of a particular HDAgent’s rolesr for a given clientc is computed as:
W1(c, sr) =

∑
(appropriateness values of the cases solved bysr in

the given client profile) / (total number of such cases).

3.2 Weighting Computation Based on Similar
Client’s Experience

In this step, we compute additional weighting function of relevant
HDAgents’ roles for a given client’s role. This weighting function is
based on the appropriateness values of the clients having the same
role with the given client. The assumption applied in this step is that
we would acquire increasingly accurate weighting by taking objec-
tive views of similar clients to the given client. The basic idea behind
this step is to take advantage of the paradigm of collaborative-based
filtering [3]. In other words, we compute the weighting taking into
account appropriateness values assessed by those clients who have
the same role with the given client.

Formally, the second weighting functionW2 can be represented
as:W2 : CR×SR → Weightings. More specifically, The weight-
ing functionW2(cr, sr) of the HDAgent’s rolesr for a given client’s
role cr is computed asW2(cr, sr) =

∑
([appropriateness values

of the cases solved bysr in the client profile having the same role
with the given client’s rolecr]/[total number of such cases])/(total
number of clients having the same role with the given client).

3.3 Final Weighting Computation using Linear
Combination

As the final step, we combine two separate weightings computed in
the previous steps. For this, we adopt linear combination approach
due to its generality, simplicity, usefulness, and powerfulness [12].
Our combination formula is defined as, “W (c, s) : W1(c, sr) ∗ (1−
τ) + W2(cr, sr) ∗ τ ”, where τ denotes a combination coefficient.

Here,τ is derived from this formula,τ =
(

N(ĈR)
N(CR)

+ N(ŜR)
N(SR)

)
/2,

where theĈR andŜR are the set of clients and HDAgents that have
the same roles with the clientc and HDAgents, respectively. Finally,
the HDAgent having the highest weighting is recommended as the
most appropriate HDAgent that would solve the problem given by
the client.

4 DEMONSTRATION

To evaluate the validation of our recommendation approach, one of
the best ways might be to obtain the assessment from real help-desk
domains. Remaining that actual evaluation to our future work, we in-
stead illustrate how our recommendation approach is processed with
an example to help improve intuitive understanding of it.

Let us consider an example consisting of four clients and five
HDAgents profiles, as shown in Fig. 2. Then, we can represent a
set of formal definition of that domain as C ={CA, CB, CC, CD},
S ={IA, IB, IC, ID, IE}, CR={CR1, CR2, CR3}, SR ={SR1, SR2,
SR3, SR4, SR5}. Now we assume that the client CA presents a new
problem with the category (“printing”). To recommend an appropri-
ate HDAgent who would handle the given problem, the following
three steps are processed.

First, to compute the first weighting functionW1(c, sr), we need
to know sr seen in the client profile CA. Given example, note that
there exist three HDAgents (i.e.,s ∈ {IA, IB, IC}) and whose
three roles (i.e.,sr ∈ {SR1, SR2, SR3}) that have handle the
cases in the client profile CA. In this example, therefore,W1 is

calculated as follows:W1(CA,SR1) = (0.7+0.25+0.15)/3=0.37,
W1(CA,SR2)=0.6,W1(CA,SR3) = 0.65.

Client Profiles HDAgent Profiles

Client ID: CA

Role Category: CR1

Problem Set: Printings

Case Presented:

CA1 (0.7) : by IA,

CA2 (0.25): by IA,

CA3 (0.15): by IA,

CA4 (0.6) : by IB,

CA5 (0.65) : by IC

HDAgent ID: IA

Role Category: SR1

Problem Set: Printings

Case Handled:

CA1, CA2, CA3, CA6,

CA16, CA17

HDAgent ID: IB

Role Category: SR2

Problem Set: Printings

Case Handled: CA4,

CA18, CA19

HDAgent ID: IC

Role Category: SR3

Problem Set: Printings

Case Handled: CA5,

CA7, CA20

HDAgent ID: ID

Role Category: SR4

Problem Set: Printings

Case Handled: CA8,

CA9, CA14, CA15

HDAgent ID: IE

Role Category: SR5

Problem Set: Printings

Case Handled: CA10,

CA11, CA12

Client ID: CB

Role Category: CR2

Problem Set: Printings

Case Presented:

CA6 (0.75): by IA

CA7 (0.35): by IC,

CA8 (0.25): by ID,

CA9 (0.60): by ID,

CA10 (0.3): by IE

Client ID: CC

Role Category: CR3

Problem Set: Printings

Case Presented:

CA11 (0.3): by IE

CA12 (0.2) : by IE,

CA13 (0.2): by IE,

CA14 (0.6): by ID,

CA15 (0.9): by ID

Client ID: CD

Role Category: CR1

Problem Set: Printings

Case Presented:

CA16 (0.4): by IA

CA17 (0.7): by IA,

CA18 (0.9): by IB,

CA19 (0.3): by IB

CA20 (0.1): by IC

Figure 2. An example of the help-desk domain consisting of four clients
and five HDAgents’ profiles.

Next, to compute the second weighting functionW2(cr, sr),
we have to find a set of clients having the same role with the
given client’s rolecr. In this example, we can observe that there
is the only one client CD that has the same role with the client
CA’s role CR1. Since the client CD has the cases handled by
HDAgents IA, IB, and IC,W2 is computed as:W2(CR1,SR1) =
((0.4+0.7)/2)/1=0.55,W2(CR1,SR2) = ((0.9+0.3)/2)/1=0.6,
W2(CR1,SR3) = (0.1/1)/1=0.1.

Lastly, the final weighting function is computed based on the linear
combination ofW1 andW2 as:

Computing the final weighting ‘W ’:
W (CA,IA) = W1(CA,SR1)X (1-0.35) +W2(CR1,SR1)X 0.35 =
(0.37X0.65) + (0.55X0.35) = 0.24+0.19 = 0.43
(τ = (0.5+0.2)/2 = 0.35)
W (CA,IB) = W1(CA,SR2)X (1-0.125) +W2(CR1,SR2)X 0.125 =
(0.6X0.875) + (0.6X0.125) = 0.525+0.075 = 0.60
(τ = (0.25+0.2)/2 = 0.125)
W (CA,IC) = W1(CA,SR3)X (1-0.125) +W2(CR1,SR3)X 0.125 =
(0.65X0.875) + (0.1X0.125) = 0.22+0.015 = 0.24
(τ = (0.25+0.2)/2 = 0.125)

According to that result, we recommend the HDAgent IB who has
the role SR2 as the most appropriate HDAgent to handle the given
problem in the example.

In order to improve an intuitive impression of the correctness of
our approach, the question posed in verification used here is: “Do the
recommended agent correctly ensure an appropriate agent ?” Based
on this question, we explain how our approach is better than typical
content-based and collaborative recommendation methods.

Let us consider a situation where we would apply content-based
method with the above example, i.e., only using client CA’s past
experience. In this case, if the experience is regarded as a nor-
malized summation of the appropriateness values of the cases,
the HDAgent IC would be recommended due to the fact that
IA=(0.7+0.25+0.15)/3=0.37, IB=0.6, and IC=0.65. But, such out-
comes seem to be less confident since these are produced without
considering the other client’s opinions (i.e., the client CD), even if
the client CD has the same role (i.e., similar problem-solving charac-
teristics) with the client CA. Note that if we apply the same method
for the client CD, the HDAgent IB will be selected. Thus, we can not
guarantee that the IA is more appropriate than IB.

On the other hand, let us assume that we apply collaborative
method. Since this method does not have the role information of

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 51

the clients when trying to recommend, all the experiences (cases)
of the clients CB, CC, CD will be taken into account. Because
such clients have concerned the same type of problem (i.e., ‘print-
ing’). In this case, probably the HDAgent IA could be recommended
if we regard the experience as the same notion with the content-
based method by means of (IA: (0.75+0.45+0.7)/3=0.62, IB:
(0.9+0.3)/2=0.6, IC: (0.35+0.1)/2=0.225, ID: (0.25+0.60)/2=0.425,
IE: (0.3+0.3+0.2+0.2)/4=0.225). However, this outcome also seems
to be inadequate since the collaborative method includes the unnec-
essary or irrelevant experiences of the client CB and CC who have
different roles (i.e., problem-solving characteristics) with the client
CA. However, in our approach, we overcome those drawbacks by
only considering the clients having the same role, i.e., the client CD.
Therefore, we believe that our strategy would be intuitively correct
compared with those two methods by considering both of the indi-
vidual/similar group opinions based on the role information of the
clients.

5 RELATED WORK

Help desk systems typically leverage CBR approaches. However,
they are limited in many ways as our following discussion shows:
Caseadvisor [14] is a representative interactive CBR system that pro-
vides solutions for customer’s problems effectively in real-time. Its
recommendation is usually done interactively by working with the
customer through a requirement acquisition and definition process.
However, this system tries to search optimal cases using only the
given problem and stored cases, ignoring additional useful informa-
tion such as the knowledge of the clients and help-desk agents.

To extend the limited decision space, knowledge management-
centric help desk system is introduced [8]. This system attempts to
use diverse knowledge source in the organization including database,
files, experts, knowledge bases, and group chat to ensure high utiliza-
tion and maintenance of knowledge store. Besides, utilizing semantic
representation of the decision space [2] is proposed to improve the
accuracy of the similarity matching between the problem and cases.
Even though, these systems try to extend a decision space by utiliz-
ing more amount of knowledge involved in the case and semantical
knowledge representation, these do not consider the personalized in-
formation about the client and help-desk agent. Moreover, the prob-
lem of high dependency on the help-desk agent is not still clearly
addressed in these works.

There has been also approaches for reducing the search space for
similarity matching and retrieving accurate case retrieval by focusing
on the representation of the case. For example, the authors in [11]
partition the case into the discrimination part and shared-featured
part, and then apply a hybrid reasoning approach by integrating rule-
base and case-base techniques. Meanwhile, the research in [7] pro-
poses to use an object-oriented approach to model the domain, in
order to overcome very limited knowledge about the structure and
semantics of the domain based on attribute-value pairs, textual rep-
resentation, and question-answer. However, these still rely on the
agent’s personal expertise to make suitable solutions to the problems.

6 FUTURE WORK AND CONCLUSION

This paper presented a new hybrid design approach for recom-
mending an appropriate help-desk agent to solve the given service-
calls based on the user profile. The user profile consists of a three-
layered combination of factual, preferential and transaction informa-
tion, which can richly conceptualize the knowledge of both the client

and help-desk agent in an uniform way. The main feature of the user
profile is that a new concept of roles of the users was deployed us-
ing fuzzy logic based on problem-solving characteristics. Then, we
described how our hybrid recommendation strategy using individ-
ual/role information of the users is designed.

In the future, we plan to evaluate our approach on real help-desk
domains. Moreover, since our approach remains cold-start and spar-
sity problem unsolved, we will incorporate knowledge of cases into
our approach to address such issues.

REFERENCES
[1] Oshadi Alahakoon, Seng Loke, and Arkady Zaslavsky, ‘Capturing buy-

ing behaviour using a layered user model’,International Conference on
E-Commerce and Web Technology (EC-Web 2007), 109–118, (2007).

[2] Olli Alm, Eero Hyvnen, and Antti Vehvilinen, ‘Opas : An ontology-
based library help desk service’,4th European Semantic Web Confer-
ence 2007 (ESWC 2007), (2007).

[3] Robin Burke, ‘Hybrid recommender systems: Survey and experiments’,
User Modeling and User-Adapted Interaction, 12(4), 331–370, (2002).

[4] Robert Bushey, Jennifer Mitchell Mauney, and Thomas Deelman, ‘The
development of behavior-based user models for a computer system’,7th
International Conference on User Modeling (UM99), 109–118, (1999).

[5] Christine W. Chan, Lin-Li Chenb, and Liqiang Genga, ‘Knowledge en-
gineering for an intelligent case-based system for help desk operations’,
Expert Systems with Applications, 18(2), 125–132, (2000).

[6] Ibrahim Cingil, Asuman Dogac, and Ayca Azgin, ‘A broader approach
to personalization’,Communications of the ACM, 43(18), 136–141,
(2000).

[7] Mehmet H. G̈oker and Thomas Roth-Berghofer, ‘Development and
utilization of a case-based help-desk support system in a corporate
environment’, inICCBR ’99: Proceedings of the Third International
Conference on Case-Based Reasoning and Development, pp. 132–146.
Springer-Verlag, (1999).

[8] Luz Minerva Gonzlez, Ronald E. Giachetti, and Guillermo Ramirez,
‘Knowledge management-centric help desk: specification and perfor-
mance evaluation’,Decision Support System, 40(2), 389–405, (2005).

[9] Robert Heckman and Audrey Guskey, ‘Sources of customer satisfaction
and dissatisfaction with information technology help desks’,Journal of
Market-Focused Management, 3(1), 59–89, (1998).

[10] Mohammad Jamshidi, Nader Vadiee, and Timothy J. Ross,Fuzzy logic
and control: software and hardware applications, Prentice-Hall, Inc,
1993.

[11] Yuh Foong David Law, Sew Bun Foong, and Shee Eng Jeremiah Kwan,
‘An integrated case-based reasoning approach for intelligent help desk
fault management’,Expert Systems with Applications, 13(4), 265–274,
(1997).

[12] Qing Li and Byeong Man Kim, ‘An approach for combining content-
based and collaborative filters’,Proceedings of the sixth international
workshop on Information retrieval with Asian languages, 11, 17–24,
(2003).

[13] Satya Shah, Rajkumar Roy, and Ashutosh Tiwari., ‘Development of
fuzzy expert system for customer and service advisor categorisation
within contact centre environment’,10th Online World Conference on
Soft Computing In Industrial Applications, (2004).

[14] Qiang Yang, Edward Kim, and Kirsti Racine, ‘Caseadvisor: Supporting
interactive problem solving and case base maintenance for help desk
applications’,In Proceedings of the IJCAI 97 Workshop on Practical
Applications of CBR, (1997).

[15] Qiang Yang and Jing Wu, ‘Enhancing the effectiveness of interactive
case-based reasoning with clustering and decision forests’,Applied In-
telligence, 14(1), 49–64, (2001).

[16] Arkady Zaslavsky, Claudio Bartolini, Abdel Boulmakoul, Oshadi Ala-
hakoon, Seng Wai Loke, and Frada Burstein, ‘Enhancing the it service
desk function through unobtrusive user profiling, personalization and
stereotyping’,Proceedings of the 14th Annual Workshop of HP Soft-
ware University Association, (2007).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 52

ICARE: A Context-Sensitive Expert Recommendation
System

Helô Petry, Patricia Tedesco, Vaninha Vieira and Ana Carolina Salgado

Abstract. In a competitive world, where time and resources are
sparse, people can improve their productivity if they interact
with others that possess hands-on experience in the task or
problem being performed. Expert Recommendation Systems
(ERS) aim at identifying experts that may help people to
accomplish their tasks. However, existing ERS are expert-
centered and usually do not consider users' and experts'
contexts, which impacts the adequacy of their recommendations.
This paper presents ICARE (Intelligent Context Awareness for
Recommending Experts), an ERS that considers the context of
people involved, providing recommendations that better fit users'
needs. We discuss how context was considered and the heuristics
used to perform experts ranking. The results of our experiment
show that the context awareness in ICARE was deemed
satisfactory and its recommendations were well evaluated by the
participants.1

1 INTRODUCTION
Increasing competition and decreasing time to market have
compelled organizations to improve their working processes,
pressing people to continually increase their productivity.
However, individuals may have difficulties while performing
their tasks, especially in knowledge intensive working
environments. To make matters worse, such environments often
lack adequate tools to help people overcoming their problems in
an easy and fast way.

This state of affairs was pointed out to us in a questionnaire
applied in five Computer Science research and development
environments. We obtained fifty participants with different
profiles and backgrounds. To the question “how did you solve
the last problems that you faced while fulfilling your tasks?”,
40% of the participants answered “I used Google”, 20% said that
they searched in documentation and 30% answered that they
asked a friend. These results show that most people search for
help in sources that cost time and effort (Internet and
documentation). Also, asking a friend may not be successful
because it is possible that the user has no friends with the needed
knowledge.

In this kind of situation, people can save time and effort if
they can interact with others that have the necessary knowledge
obtained through experience, i.e. the experts. Researchers have
observed that many affinities and opportunities for collaboration
and knowledge sharing are discovered in informal interactions,
such as chats in the coffee room [11]. However, it may be the
case that potential collaborators may be not physically close to
each other, and thus informal workplace meetings are not likely.
Moreover, individuals may not possess a priori the knowledge
that allows them to identify this possibility of interaction. One

1 Informatics Center, Federal University of Pernambuco, Brazil. Email:
{hp, pcart, vvs, acs}@cin.ufpe.br

example was given to us by the director of a big cell phone
company. He told us the case of an employee that faced a
difficulty and did not find anyone to help. His superiors even
contacted the organization in USA without success. After days
of searching, they found out that an employee with the necessary
knowledge worked in the same room that the one searching for
help.

Thus, some form of computational support is necessary in
order to make informal collaborations possible. A system that
identifies potential collaborators and put them in touch can
provide benefits to the work they are developing, since direct
communication makes skill and tacit knowledge sharing easier
and more effective. Expert Recommendation Systems (ERS) aim
to identify experts which may help people in accomplishing their
tasks.

However, existing ERS are expert-centered, since they focus
mostly on expertise matching (e.g. [9], [12]). Further, they
usually do not consider the context of people involved in the
recommendation (the user requesting the recommendation and
the recommended expert). This means that their suggestions are
not always adequate to the situation of the user searching for
help. Context is defined as the set of all relevant elements that
can characterize people and their current situation while
interacting with an application [14]. The use of context to
provide services and information more adequate to users,
considering their needs and preferences, is the goal of systems
called context-sensitive systems.

In this light, we propose a context-sensitive ERS that aims at
providing recommendations that better fit users’ needs and
situations (in this paper, the term ‘user’ refers to the person who
is requesting the recommendation). This ERS is named ICARE
(Intelligent Context Awareness for Recommending Experts). The
use of context in ERS may enable better recommendations since
it can be adapted to the user’s current situation. For instance, for
a busy user, ICARE might recommend the most available
experts; or for a user with little experience, it might recommend
experts in similar organizational position of such user. To verify
the acceptance and correctness of ICARE, we performed an
experiment whose results showed that the idea of embedding
context-sensitivity into an ERS was well evaluated, that the
defined heuristics for expert ranking worked properly, and that
the recommendations were judged adequate to the users’ needs.

The remainder of this paper is organized as follows: Section 2
introduces the concepts behind ERS; Section 3 presents ICARE;
Section 4 describes the experiment performed to evaluate
ICARE; Section 5 reviews some related work and compares
them with ICARE; and, finally, Section 6 points out conclusions
and directions for further work.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 53

2 EXPERT RECOMMENDATION
Expert-seeking activities mostly happen in a dynamic work
environment where people always deal with tasks that require
new skills and knowledge. In this kind of environment, the
ability to find experts in the required expertise is crucial to the
successful completion of tasks [5]. Therefore, there is a need to
use technology to scale from personal networks to the larger
community of people within the organization [1]. Expert
Recommendation Systems (ERS) are those that return references
to individuals identified as experts in a requested domain and
that can be used to connect human actors [12].

An ERS can help individuals by linking people who might
never have an opportunity to meet face to face [1]. This kind of
system can also provide benefits to the organization because, by
representing employees experience and skill, they become a tool
to represent tacit knowledge [1]. When existing knowledge gets
applied to a problem, the organization saves time.

ERS can be considered as communication vehicles to the
right person (i.e. the one with the adequate knowledge to our
needs) [1]. Hence, ERS can be used to promote informal
collaboration between people who need to share information.
Yet, this interaction may help individuals to strengthen the tie
between them. So, an ERS can help to augment personal
networks by fostering connections with people inside the same
organization [1].

Existing ERS use different: (i) types of information in order
to indicate expertise (e.g. email communication, paper
authorship); (ii) approaches to extract expertise data (e.g.
linguistic techniques, mining data from the Web); and (iii)
criteria to rank expert, such as expertise degree and social
closeness.

When evaluating existing ERS (e.g. [7], [8], [10]), the lack of
flexibility in expert definition becomes very clear. Their
development is guided by a preconceived idea of expert (i.e. an
expert is who reads documents about some topic, or expert is a
paper author). They also need more flexibility when defining the
expertise source of information. Besides, existing ERS usually
do not consider user and expert contexts, or consider them
isolated. At most, some systems use social networks. This way,
their output is user-independent.

Researchers are beginning to realize this need to use context
in expert recommendation, as the work of Balog et al. [2]
indicates. The authors refined expertise retrieval models by
incorporating topicality and organizational structure. So, the
organizational unit a person belongs to was used as a context for
that person. They tested efficiency of the models and found a
positive impact of the context models for expert finding.

Therefore, we believe that a context-sensitive ERS can be
more effective, providing more interesting opportunities for
collaboration.

3 ICARE
In order to address the deficiencies identified in Section 2, we
present ICARE (Intelligent Context Awareness for
Recommending Experts) (Figure 1). ICARE has two main
characteristics: it is context-sensitive and it uses different and
many independent expertise sources. This system is designed to
receive anytime the configuration to access a source. Regarding
its context awareness, ICARE considers two main entities: the

user that requests the recommendation and the expert that will be
considered in the returned experts list. ICARE aims to improve
its recommendations by using the user’s and expert’s context in
its experts ranking function, thus prioritizing experts that better
fit user’s current needs.

ICARE uses the following contextual elements to characterize
users and experts:

1. Availability: relates to how busy s/he is and in how many
activities s/he is involved. It is more likely that someone
with high availability will accept to engage in a
collaborative session than someone with low availability;

2. Approachability: means how easy is to get him/her involved
in a collaborative session. For instance, it is likely that a
colleague (John), who works with his office’s door opened,
is more accessible than a colleague (Peter) who works with
his door closed. However, if John is with his door opened
and the room is full with people trying to speak with him, it
demonstrates that John is accessible but is currently not
available.

3. Organizational level: means his/her hierarchical position in
a business or academic organization;

4. Social distance: is the number of people who know each
other and that socially separate user from expert. Numerous
studies have shown that one of the most effective channels
for dissemination of information and expertise within an
organization is its informal network of collaborators,
colleagues, and friends [6], [4];

5. Current task: represents the task s/he is performing;
6. Reputation: is the expert overall quality as judged by users

who contacted him. It is estimated through the feedback
given by the users after using ICARE;

7. Interests: information related to the user that help on
identifying the desired expertise;

8. Expertise degree: means how much someone is an expert in
a given expertise.

Therefore, ICARE context sensitiveness helps to improve the
odds of a successful collaboration between user and expert. For
instance, if the user belongs to the second organizational level
(of seven), it is possible that s/he prefers to interact with experts
that belong to similar organizational levels (like 1, 2 or 3)
because s/he might not feel comfortable in approaching someone
of a high position in the organization.

The contextual elements used in ICARE are acquired through
a generic context manager called CEManTIKA (Contextual
Elements Management Through Incremental Knowledge
Acquisition) [14]. This manager defines procedures and an
infrastructure to manipulate contextual elements, managing the
user’s context that is shared with ICARE through its Context
Interface (Figure 1). Another interface, the Recommendation
Interface, is used to request recommendations to ICARE. It can
be accessed, for instance, by a graphical user interface that helps
the user in informing his/her desired expertise. The internal
components of ICARE are explained in the next section.

3.1 ICARE Architecture
The system architecture is divided in four modules: Experts
Database Generator, Expertise Definer, Experts Retriever and
Experts Presenter. The details are presented in what follows.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 54

Figure 1. ICARE architecture

3.1.1 Experts Database Generator
This module is responsible for: (i) registering available experts’
sources; (ii) receiving the configuration to access each expert
source; and (iii) saving the information acquired in the experts’
sources in the ICARE Experts Base. Notice that this database
must be populated before a recommendation request. The set of
stored experts is finite and defined, such as the set of employees
in the organization.

When including a new expert source, the Experts Database
Generator (EDG) receives a description of the provided
information and how to access this source (e.g. SQL script to
query the organizational projects database). Also, the EDG maps
the information retrieved to a concept of the domain ontology.

Some kinds of expertise are inherently related to
organizational activities practices. EDG uses a set of production
rules to associate specific activities with the related expertise.
These rules must be informed when including the new expert
source.

3.1.2 Expertise Definer
The first step towards an expert recommendation is to discover
the desired expertise. This is the Expertise Definer’s (ED) goal.
The ED input is a keyword and its output is one or more
ontological concepts that match the keyword. It uses a domain
ontology in which every concept is related to a set of keywords
with a weight. The weights are used to identify the concepts
most related to the keyword. Thus, ED searches the ontology to
get the set of concepts related to the given keyword.

The ED also considers the expertise (concepts) identified in
previous recommendation cases. To this end, ED selects the
stored recommendation cases that had: (i) the same keyword as
input; (ii) positive feedback; and (iii) similar context to the

current user’s. This last requirement uses a context similarity
formula that calculates the degree of similarity between two
contexts. This formula sums the absolute differences between the
information contained in both contexts. It considers the
following contextual elements: approachability, availability,
organizational level, and current task.

Next, ED increases the weight of the identified expertise
related to the user’s interests. The retrieved expertise list is
ordered according to each expertise weight. Finally, ED filters
this list, maintaining the n first expertise, where n is a system
configuration parameter.

3.1.3 Experts Retriever
After defining the searched expertise, the second step towards
the expert recommendation is to find the corresponding experts.
This is the Experts Retriever (ER) task. Its input is the expertise
list provided by ED and its output is an ordered expert list.

For each expertise in the list, the ER accesses the Experts
Base and retrieves the related experts. The results of these
queries are unified and the duplicates are removed. Next, ER
queries the Context Interface for the contexts of the identified
experts. Then, the experts are ranked according to their context.

The ICARE experts ranking is based on the following
contextual elements:

1. Expertise degree (ed);
2. Approachability (ap);
3. Availability (av);
4. Reputation (rep);
5. Social distance (socialDist); and
6. Difference between user and expert organizational levels.

Notice that the user’s context is represented by the same
contextual elements of the expert context (except for reputation
and expertise degree).

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 55

Fitness is a measure that identifies the suitability of an expert
to the recommendation. In order to calculate the fitness of a
given expert to the recommendation, we created a formula
simply separating the elements that are directly proportional
from the inversely proportional to the expert fitness. For
instance, the higher an expert’s reputation is, the higher his
fitness. Similarly, the lower the social distance between the
expert and the user is, the higher the expert’s fitness. Then, the
expert fitness can be calculated by the following formula (which
receives the expert’s context):

eu OLOLsocialDist
repavapedFitness
−+

+++
=

Where OLu = user organizational level; and OLe = expert
organizational level.

By using the fitness measure, we obtain an expert ranking that
is already context sensitive because more available experts will
receive a higher fitness, for instance. But we can improve it by
applying different weights to the contextual elements. This
approach is interesting because a user may find one element
more important than another. For instance, a user might prefer to
contact the more accessible experts than the ones with good
reputation. This way, the user’s context is used to adjust the
contextual elements’ weights. In other words, the weight given
to each element changes according to the user’s context. Then,
we introduce these weights in the formula that the system uses to
calculate the fitness of each retrieved expert:

()
eu OLOLsocialDist

repavapedFitness
−+×
×++×+×

=
54

321
αα

ααα

Where αi = contextual elements’ weight. All the data applied
to the formula are normalized in values between 0 and 1. In case
the denominator results in 0, it is replaced by 1.

Therefore, expert fitness indicates his adequacy to the current
recommendation. Thus, the retrieved experts are ranked
according to their fitness.

These contextual elements’ weights (αi) are adjusted by a
Context Knowledge Base (CKB). It has an inference engine and
a set of context rules. These rules define which elements should
be favored given a user’s context. They follow the pattern:
<if> contextual condition
<then> contextual elements weights

setting
A sample rule that exists in the CKB is the following:
<if>

Organizational level < 0.5
Approachability < 0.3

<then>
Expertise degree weight = 0.8
Social distance weight = 0.2

This rule means that if the user occupies a low position in the
organization and is not very accessible, the recommendation will
favor experts with higher expertise degrees and will give less
importance to the social distance.

Every time the system receives a recommendation request,
the inference engine is informed with the user’s context and is
activated to calculate the contextual elements weights.

The context rules were defined after a preliminary experiment
constituted by a questionnaire applied in several Computer
Science research and development organizations. The
experiment has identified the participants profile and their

preferences when asking an expert recommendation. More
specifically, people were asked whether or not they agreed with
each contextual element and to rank the elements by importance.
The contextual elements in question are: expertise degree,
availability, organizational level, reputation, and social
relationship. The analysis of the results helped us to create the
rules that associate the user’s context to a contextual elements
weight setting. An interesting result was the most disapproved
criterion: social relationship (by 64% of the participants).
Meaning that people do not consider relevant the social
relationship between them and the recommended expert.

3.1.4 Experts Presenter
The last step in the expert recommendation is to present the
identified experts. The Experts Presenter aims to adjust experts’
presentation according to the user’s needs or preferences,
concerning attributes such as the amount and format of the
information. For instance, users might want to receive all the
results found in HTML format.

3.2 Implementation
We have developed a prototype aiming to demonstrate ICARE
functionalities and performance. Since we are interested in
evaluating the use of context in expert recommendation, our
implementation scope included the ICARE modules that use
context: Expertise Definer, Experts Retriever, and Context
Interface. In addition, we have developed a web user interface to
illustrate the results of the recommendation.

We also have created the Experts Base using a third party
system that automatically generates user profiles [13]. It
identifies user interests by using textual information retrieval
techniques applied to a standard curriculum platform proposed
by a Brazilian research organization, named Lattes. We supplied
the system with a set of curricula and stored the generated
profiles in ICARE’s database.

The Context Interface obtains the contextual information
from the CEManTIKA context manager. However, it is still
being designed. This way, the context information used in
ICARE was, for now, simulated. Notice that ICARE and
CEManTIKA use a context API which allows them to be
developed separately.

4 EXPERIMENT WITH ICARE
We ran an experiment with ICARE addressing the objective to
evaluate:

1. Acceptance of ICARE strategies. More specifically, we
wanted to evaluate if the users agreed with the contextual
elements, and whether or not they agreed with the weights’
variation according to the user’s context;

2. If the steps of the recommendation process are executed as
expected. Such steps comprehend: (i) identifying expertise
through the ED; and (ii) retrieving and ranking experts
through the ER. Notice that the contextual elements’
weights are also verified;

3. If the recommended experts are adequate, which means
that the system returned suitable experts; and

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 56

4. If the experts’ generated profiles are consistent with their
curricula.

In order to allow the user to evaluate ICARE’s results, its
GUI shows the following internal and intermediate data of the
recommendation: (1) the concepts identified; and (2) the
contextual elements’ weights inferred by CKB. Moreover, to
allow the user to evaluate the experts’ profile, we showed their
short curricula. In addition, the contexts of the recommended
experts were available.

The experiment counted with 21 participants; all of them
were attendees of a course on Intelligent Agents belonging to the
Computer Science Post-Graduation Program of our University.
They were gathered in a lab where they could test ICARE at the
same time. In the beginning of the experiment, we presented
ICARE’s goal and features and how to use it.

The participants were asked to inform their current context:
approachability, availability, current task, and organizational
level. The participants were also asked to request five
recommendations. Afterwards, they answered a questionnaire
that aimed at evaluating the aforementioned goals.

With regards to the first objective of the experiment, the
results showed 86% of the participants agreed that the weights of
the contextual elements should vary. Also, 85% of them
evaluated the ranking elements as relevant. The other 15% of the
participants specified the irrelevant elements, in their opinion,
as: social relationship, organizational level and expertise degree.

Addressing the second objective, we obtained the following
results. 47% of the participants said that the system identified
adequate concepts related to the informed keyword. 34% of them
said that the concepts were correctly identified, but incorrectly
ordered. 65% of them approved the contextual elements’ weights
that the system generated.

Addressing the last two objectives, the results showed that
63% of the participants classified the recommended experts as
adequate. In other words, they considered that the experts’
curricula were consistent and that the system recommended the
correct experts to the given request. Amongst the participants
that disapproved the experts found, 19% (approximately half of
them) also classified the expertise identified as inadequate (in the
same recommendation). Therefore, the system could not find the
correct experts if the expertise was not identified correctly first.

Summarizing, the experiment showed that ICARE was well
accepted and its context-sensitiveness and contextual elements
were well evaluated. Also, the contextual elements’ weights, the
identified concepts and recommended experts were, in general,
adequate. Therefore, ICARE demonstrated being consistent and
efficient.

5 COMPARATIVE ANALYSIS
In the following we analyze some existing ERS.

ReferralWeb [7] provides recommendations via chains of
named individuals: their social network. This way, the user can
find referral chains between him and experts on arbitrary topics.
ReferralWeb goal is recognizing communities based in scientific
paper co-authoring. The system uses the co-occurrence of names
in close proximity in any documents publicly available on Web
as evidence of a direct relationship. Such sources include list of
coauthors in technical papers and citation papers. It uses a
general search engine (AltaVista) to retrieve documents
associated to a user. ReferralWeb has the advantage of

identifying expert groups and the strength of the relationship
between them. However, ReferralWeb has no specific expert
search mechanism.

Expertise Recommender (ER) [10] uses social networks to
tailor recommendations to the user. The recommendation is done
in two steps. First, it finds a set of individuals who are likely to
have the necessary expertise. Then they are matched to the
requester by using a social network. Expertise indication is
defined according to organizational criteria. The technique for
profile construction also depends on the organization. Experts
are ranked according to expertise degree and social closeness.
ER’s main advantage is its flexibility towards expertise
indications and sources. But identifying social networks in the
organization can be very costly.

HALe [9] aims at discovering implicit and explicit
connections between people by mining semantic associations
from their email communications. Thus, email communication is
the expertise indication in HALe. Its approach to construct
profile uses linguistic techniques. But HALe does not rank the
experts and, therefore, the user has less information at hand to
decide which expert to approach. Its transparency to the user is
an advantage in HALe, since it does not disturb his/her activities.
However, this system uses only one kind of information to
indicate people expertise.

TABUMA (Text Analysis Based User Matching Algorithm)
[12] generates users’ profiles by extracting keywords from text
documents using linguistic methods such as LSI (Latent
Semantic Indexing). So, having (which implicitly means that the
person read) text documents about a topic is the expertise
indication in TABUMA. Its approach to construct profile uses
linguistic techniques. Experts are ranked according to their
expertise degree. An advantage in TABUMA is its independency
from text document format. A disadvantage is that it needs to ask
the user to choose a set of documents that s/he considers
representative of her/his knowledge.

Liu et al. [8] present a RDF-based solution to expertise
matching and integration. The main challenge addressed in their
work is how people retrieval can be improved by extracting
relevant information associated to an expert from different data
sources and then semantically integrating them. It uses scientific
and academic production as expertise indication. The profiles are
constructed using wrappers that access each source. Experts are
ranked according to expertise degree. A positive feature
identified in this work is integration of information gathered
from different sources. A disadvantage is that they do not
consider any information related with the user.

When comparing the existing ERS with ICARE, we can
observe the following:

• ICARE is flexible in the definition of expert: s/he can be
defined by his/her authorship, or list of certifications, or
time performing a given job. Therefore, ICARE is
independent of the type of information used to characterize
an expert. On the other hand, the existing ERS have a
preconceived idea of expert;

• Except for the proposal of [8] and [10], the ERS usually are
constructed according to a predefined expertise source.
However, ICARE is flexible regarding the source of
information used to acquire expertise data;

• In general, the existing ERS do not consider user and expert
contexts. At most, some systems use social networks, such
as ReferralWeb [7], ER [10] and HALe [9]. Moreover, as

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 57

our experiments indicated, this contextual information
seemed to be the most unpopular between all contextual
elements used in ICARE. Although the work of Balog et al.
[2] is not a ERS, it uses contextual information that is
distinct from social relationship (organizational position).
On the other hand, ICARE uses a set of contextual elements
and, this way, its output is user-dependent. This means that
ICARE recommendations are tailored to the user and expert
situation.

Therefore, ICARE provides more interesting opportunities for
collaboration than the others ERS presented.

ICARE is restricted in the sense of using only predefined
contextual elements (described in Section 3). Some researchers
argue that context cannot be delineated and defined in advance,
that the scope of contextual features is defined dynamically, and
that context is particular to each occasion of activity or action (it
is not stable) [3]. However, it becomes much more complex to
develop context sensitive systems that regard this flexibility
requirement. Therefore, we chose this approach driven from a
technological perspective, focusing on the available
computational resources, information and techniques. Moreover,
we took care to detach the context related features in ICARE
from the common functions. Therefore, new context elements
might be included in the system with low effort.

6 CONCLUSIONS & FUTURE WORK
People are frequently involved in knowledge intensive activities
that, naturally, raise doubts which usually must be solved
quickly. In these situations, they need a tool to help them to find
proper and efficient help. An ERS may help on identifying
people with a given knowledge. Nevertheless, we have seen that
existing ERS do not consider the context of people involved in
the recommendation. Researchers are now realizing this
necessity, as indicated in [2]. Our work presents a step further in
this direction, since we proposed and developed a context-
sensitive ERS which considers a set of contextual elements.
Hence, we presented in this paper ICARE, a context-sensitive
ERS that aims at facilitating the collaboration between people
who can share knowledge.

ICARE uses context to customize its recommendations and,
therefore, prioritize the most suitable experts for the user at the
moment. The user’s context is employed to adjust the weights
applied to the contextual elements used to rank the experts who
will be recommended. Hence, the recommendation results are
different for each user, according to his/her context. The weights
adjusting feature was develop after a preliminary experiment that
identified people preferences when receiving recommendations.

The contributions of this work are:

• The inclusion of context sensitiveness in an ERS and its
construction. This need was identified in the bibliography
and confirmed in the experiment with ICARE;

• The proposed contextual elements used in recommendation
(which were also approved in the experiment with ICARE);

• The experts ranking heuristics defined;
• The proposal to modify the relations between the contextual

elements according to the user’s context;

• The preliminary experiment that helped to understand what
people expect from an ERS. It also evidenced their need for
a tool which helps to locate knowledge.

ICARE was evaluated through an experiment. Its results show
that our ERS demonstrated being consistent and efficient, since
it generated adequate and successful recommendations.

As further work, we intend to apply ICARE in a real
organizational environment. Also, we plan the integration with
CEManTIKA and the addition of metadata representing the
quality of the contextual information, such as accuracy and time.

ACKNOWLEDGMENTS
Authors want to thank CNPq and CAPES for their financial
support.

REFERENCES
[1] Ackerman, M., Pipek, V., Wulf, V. "Sharing Expertise: Beyond

Knowledge Management", The Mit Press (2003).
[2] Balog, K., Bogers, T., Azzopardi, L., Rijke, M., van den Bosch, A.

"Broad expertise retrieval in sparse data environments", ACM
SIGIR conference on Research and development in information
retrieval (2007), pp. 551-558.

[3] Dourish, P. "What We Talk about When We Talk about Context",
Personal and Ubiquitous Computing, v. 8, n. 1 (2004), pp. pp. 19-
30.

[4] Galegher, J., Kraut, R., Egido, C. "Intellectual Teamwork: Social
and Technological Bases for Cooperative Work", Hillsdale, NJ:
Lawrence Erlbaum Associates. (1990).

[5] Ghazali, O., Shiratuddin, N. "Expert-seeking Activity Framework",
Journal of Advancing Information and Management Studies, v. 1,
n. 1 (2004), pp. 63-73.

[6] Granovetter, M. S. "The Strength of Weak Ties", The American
Journal of Sociology, v. 78, n. 6 (1973), pp. pp. 1360-1380.

[7] Kautz, R., Selman, B., Shah, M. "ReferralWeb: Combining Social
Networks and Collaborative Filtering ", Communications of the
ACM, v. 40, n. 3 (1997), pp. 63-65.

[8] Liu, P., Curson, J., Dew, P. "Use of RDF for Expertise Matching
within Academia", Knowledge and Information Systems, v. 8
(2005), pp. 103-130.

[9] McArthur, R., Bruza, P. "Discovery of Implicit and Explicit
Connections between People Using Email Utterance", Conference
on Computer Supported Cooperative Work (2003), pp. 21-40.

[10] McDonald, D. W., Ackerman, M. S. "Expertise Recommender: A
Flexible. Recommendation System and Architecture", Conference
on Computer Supported Cooperative Work (2000), pp. 231-240.

[11] Petry, H., Vieira, V., Tedesco, P., Salgado, A. C. "Um Sistema de
Recomendação de Especialistas Sensível ao Contexto para Apoio à
Colaboração Informal", Simpósio Brasileiro de Sistemas
Colaborativos (2006).

[12] Reichling, T., Schubert, K., Wulf, V. "Matching Human Actors
Based on their Texts: Design and Evaluation of an Instance of the
ExpertFinding Framework", ACM SIGGROUP Conference on
Supporting Group Work (2005), pp. 61-70.

[13] Ribeiro Jr, L. C. "Definição Automática de Perfis de Usuários de
Sistemas de Recomendação", Escola de Informática. Universidade
Católica de Pelotas (2005).

[14] Vieira, V., Tedesco, P., Salgado, A. C., Brézillon, P. "Investigating
the Specifics of Contextual Elements Management: The
CEManTIKA Approach", Modeling and Using Context
(CONTEXT'07) (2007), pp. 493-506.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 58

A Discussion on Multi-Criteria Recommendation
Nikos Manouselis1

Abstract. Recent studies have indicated that since multiple item
characteristics may be taken into consideration when making a
selection, it might not be sufficient to base recommendation on
single-attribute ratings. They also highlighted the potential of
applying Multi-Criteria Decision Making (MCDM) methods in
recommender systems. This position paper aims to introduce
multi-criteria recommender systems, review and assess current
implementations of MCDM in recommender systems, as well as
identify open issues for further discussion and investigation.12

1 INTRODUCTION
The problem of recommendation has been identified as the way
to help individuals in a community to find information or items
that are most likely to be interesting to them or to be relevant to
their needs [5]. It has been further refined to (i) predicting
whether a particular user will like a particular item (prediction
problem), or (ii) identifying a set of N items that will be of
interest to a certain user (top-N recommendation problem) [3]. In
a recommender system, the items of interest and the user
preferences are represented in various forms, which may involve
one or more variables. Particularly in systems where
recommendations are based on the opinion of others, the
incorporation of the multiple criteria that can affect the users’
opinions into the recommendation problem, can potentially lead
to more realistic recommendations [1].

To this direction, several recommender systems have already
been engaging multiple criteria for the production of
recommendations. Such systems, referred to as multi-criteria
recommenders, early demonstrated the potential of applying
multi-criteria decision making (MCDM) methods to facilitate
recommendation in numerous application domains (e.g., movie
recommendation, restaurant recommendation, product
recommendation) [2]. A recent review and assessment of
implementations of multi-criteria recommenders that have been
proposed in the literature [5] has raised a number of issues for
further discussion and investigation.

2 RECOMMENDATION AS MCDM PROBLEM
The recommendation problem can be formulated as follows (in
the light of [1], [2], [5]): let C be the set of all users and S the set
of all possible items that can be recommended. It may be
assumed that there exists a utility function

 that can serve as an indicator
(measure) of the appropriateness of recommending an item s to

+ℜ→× SCsU c :)(

1 Greek Research & Technology Network (GRNET S.A.), 56 Mesogion
Str., Athens, Greece. Email: nikosm@ieee.org.

user c. It can also be assumed that this function is not
known for the whole C x S space but only on some subset of it.
Therefore, in the context of recommendation, we want for each
user c

)(sU c

∈C to be able to:

− either estimate (or approach) the utility function

for some item s of space S for which is not yet
known;

)(sU c

)(sU c

− or to choose a set of items that will maximize

: (1)

SS ∈′
)(sU c)(maxarg, sUsCc c

Ss ′∈
=∈∀

In many recommender systems, the utility function
considers only one attribute of an item, e.g. its overall evaluation
or rating. Recent studies (see [1],[2]) have indicated that this
consideration might be insufficient, since the suitability of an
item for a user can depend on more than one attributes (or
criteria). The recommendation problem can be therefore
modeled as a decision problem with multi criteria.

)(sU c

To model recommendation as a MCDM problem, we adopt
the following steps of Roy’s general modeling methodology for
decision making problems [9]:
− Object of the decision. That is, defining the object upon

which the decision has to be made and the rationale of the
recommendation decision.

− Family of criteria. That is, the identification and modeling
of a set of criteria that affect the recommendation decision,
and which are exhaustive and non-redundant.

− Global preference model. That is, the definition of the
function that aggregates the marginal preferences upon each
criterion into the global preference of the decision maker
about each item.

− Decision support process. That is, the study of the various
categories and types of recommender systems that may be
used to support the recommendation decision maker, in
accordance to the results of the previous steps.

This modelling approach, together with a presentation of

MCDM methods that can support automatic recommendation
have been presented in previous work [5]. In addition, it has
been used as a basis for designing, implementing, and
experimentally studying a family of multi-attribute utility
collaborative filtering algorithms [6].

3 EXISTING MULTI-CRITERIA SYSTEMS
In our previous work [5], a review and classification of multi-
criteria recommender systems has also taken place. An aspect
not included in this previous work has been the examination of
their actual implementation and testing. Revisiting our sample of
forty-two (42) multi-criteria recommender systems that have

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 59

been identified in the literature, we could note that the majority
is proposed at only a design or early prototype level, which has
never been tested by actual end-users. More specifically, for
sixteen (16) systems only a proposed design is presented,
whereas for nineteen (19) only an early prototype has been
implemented. This means that these proposed systems have
never been deployed and tested under actual usage conditions.

As far as their evaluation is concerned, more than half (i.e. 22
out of 42) of the systems in the sample have not been tested at
all. For the remaining twenty (20), some evaluation has taken
place – although not always in relation to the needs of some
targeted users or intended application context. Our analysis
revealed that:
− In only 4 out of these 20 tested systems evaluation focused

on the system and/or its interface (e.g. satisfaction from the
system or its usability). In the rest of the cases, only the
recommendation algorithm has been tested (mainly its
accuracy).

− In 3 out of 20 cases a pilot experiment that involved data
collection from actual users took place (e.g. collecting
ratings through a pilot experiment). In the rest 17 systems,
a simulated execution of the recommendation algorithm
took place. As far as these are concerned: (a) the data used
for the simulation has been real (i.e. collected from the
actual usage of the system) in only 5; (b) in 7 cases the data
used for evaluation has been synthetic (simulated); and (c)
in 5 cases a publicly available but single-attribute data set
has been used, such as the MovieLens and EachMovie ones
[4].

Overall, our analysis indicated that the evaluation of multi-

criteria recommender systems cannot be considered systematic
or complete. More than half of the systems have not been tested
at all. In many cases, testing only comprised from a simulated
execution of the algorithm. And in most occasions, the data sets
used have been from different application contexts or under
conditions that do not match the actual requirements of the
intended usage environment (e.g. using single-attribute rating
data sets instead of multi-attribute ones).

5 OPEN ISSUES
Based on our previous work and the results of our analysis
presented above, we can identify a number of potentially
interesting observations regarding multi-criteria recommender
systems. First of all, it has been noted that the MCDM methods
used for the construction of the preference models are mostly
value-focused ones. In particular, the majority of systems uses
Multi-Attribute Utility Theory (MAUT) and engages a linear
additive value function for the representation of user preferences.
This is a traditional decision making approach, widely applied
and convenient to implement. On the other hand, assuming that
the preference function is linear restricts the way user
preferences are represented. Therefore, alternative forms for
representing preferences in a MCDM manner should be
explored.

Evaluation also poses a challenge for multi-criteria systems.
One reason is that not many multi-criteria rating data sets from
real-life applications are currently available. This means that in
order to test a new multi-criteria recommender system, either
experimental data have been collected through pilot user studies

(as in the case of [6]) or synthetic (simulated) data sets have to
be produced (as in the case of [7]). It would be desirable to have
a way to represent, store and reuse multi-criteria ratings data
sets, so that they can be shared among the researchers of this
community. In addition, a simulation environment that can be
used for the production of synthetic data sets to facilitate testing
of multi-criteria recommendation algorithms would also be
valuable. In this direction, we have implemented the CollaFiS
(Collaborative Filtering Simulation) online environment for
testing MAUT-based collaborative filtering algorithms [8].

Finally, an important limitation is the fact that the number of
criteria increases calculation time and poses technical
requirements. For instance, extending a product database in
order to describe the multiple attributes of all products requires a
larger storage space.

4 CONCLUSIONS
This position paper aims to serve as an introduction to the topic
of multi-criteria recommender systems. It outlines how the
recommendation problem is modelled as a MCDM one, assesses
current implementations of MCDM methods in recommender
systems, and identifies some open issues for further exploration.

ACKNOWLEDGEMENTS
Part of the work presented in this paper has been funded with
support by the European Commission (project No ECP-2006-
EDU-410012 Organic.Edunet).

REFERENCES
[1] G. Adomavicius and Y. Kwon, ‘New Recommendation Techniques

for Multi-Criteria Rating Systems’, IEEE Intelligent Systems, 22(3),
48-55, (2007).

[2] G. Adomavicius and A. Tuzhilin, ‘Towards the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions’, IEEE Transactions on Knowledge and Data
Engineering, 17(6), 734-749, (2005).

[3] M. Deshpande and G. Karypis, ‘Item-based Top-N Recommendation
Algorithms’, ACM Transactions on Information Systems, 22(1), 143-
177, (2004).

[4] J.K Herlocker, J.A. Konstan, L.G. Terveen and J.T. Riedl,
‘Evaluating Collaborative Filtering Recommender Systems’, ACM
Transactions on Information Systems, 22(1), 5-53, (2004).

[5] N. Manouselis and C. Costopoulou, ‘An Analysis and Classification
of Multi-Criteria Recommender Systems’, World Wide Web Journal,
10(4), 415-441, (2007).

[6] N. Manouselis and C. Costopoulou, ‘Experimental Analysis of
Design Choices in Multi-Attribute Utility Collaborative Filtering’,
International Journal of Pattern Recognition and Artificial
Intelligence, 21(2), 311-331, (2007).

[7] N. Manouselis and C. Costopoulou, Experimental Analysis of
Multiattribute Utility Collaborative Filtering on a Synthetic Data Set,
111-134, Personalization Techniques and Recommender Systems,
Series in Machine Perception and Artificial Intelligence Vol. 70,
World Scientific Publishing, (2008).

[8] N. Manouselis and C. Costopoulou, ‘Designing a Web-based Testing
Tool for Multi-Criteria Recommender Systems’, Engineering Letters,
13(3), (2006) (http://infolab-dev.aua.gr/files/publications/en/
1169683698.pdf).

[9] B. Roy, Multicriteria Methodology for Decision Aiding, Kluwer
Academic Publishers, 1996.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 60

Plug-in recommending for Eclipse users
Sebastian Draxler 1 and Hendrik Sander 2 and Gunnar Stevens 3

Abstract. Products like MS Office, Mozilla Firefox or Eclipse have
thousands of extensions, and each may be available in different ver-
sions. Because of this it is difficult for end-users to get an overview of
the wide range of software extensions. It therefore seems that recom-
mending extensions for component-based applications could become
an important area of application for recommender systems. This is
especially true for Eclipse, as it is a highly flexible, adaptable and
extendible working environment. We therefore conducted a quali-
tative as well as a quantitative study on the process of configuring
Eclipse in practice. We found that working in a team plays an impor-
tant role in adopting new plug-ins. Mostly co-workers, who work in
the same context currently act as ‘recommender systems’ to find suit-
able extensions. In this position paper we want to outline our findings
in detail and discuss the domain specific issues and opportunities of
team oriented recommender systems for plug-in extensions and their
appropriation in the context of Eclipse.

1 INTRODUCTION
The Eclipse platform is a very good example for a current trend
in software development. Software applications are nowadays often
based on a kernel, which can be extended flexibly by additional com-
ponents, so called plug-ins. For an Eclipse user this provides an op-
portunity to adapt an Eclipse installation to his work practice and
needs. The Eclipse platform is usually delivered as Eclipse SDK, an
Integrated Development Environment (IDE) for the Java program-
ming language. This means the common Eclipse user is a software
professional. Additional plug-ins can be installed as needed, after
unzipping the IDE.

In the context of the CoEUD project we study to which extent
recommending techniques can support end users in adapting their
working environments to their needs.

In a first step we carried out a qualitative and a quantitative study
to ascertain the existence and characteristics of the problem of find-
ing and appropriating Eclipse extensions. We therefore focused on
how software developers configure Eclipse as part of a daily work
practice. In the qualitative study we cooperated with four different
software companies from around 10 up to 250 employees. This Small
and Medium Enterprises (SME) character is typical for the German
software branch, where the average size of the enterprises is very
small [1].

In each company we conducted at least 10 semi-structured inter-
views. Additionally, we visited two SME for a defined period of time
(3-5 days) for a participatory observation [4]. The quantitative study
was based on an online survey, which was announced in different
online forums, mailing lists and two research institutes. 138 persons

1 University of Siegen, Germany, email: sebastian.draxler@uni-siegen.de
2 Fraunhofer FIT, Germany, email: hendrik.sander@fit.fraunhofer.de
3 Fraunhofer FIT, Germany, email: gunnar.stevens@fit.fraunhofer.de

participated in the survey and 59 of 138 also sent us their Eclipse
configuration data. We analyzed this configuration data in detail, be-
cause it showed us exactly which plug-ins users had installed4. As
some persons had more than one Eclipse installation, we received 76
configurations for our analysis.

Even in the SME software companies we found a huge diversity of
Eclipse installations and a highly dynamic evolution of installations.

2 PRACTICES OF ECLIPSE CONFIGURATION

There are many reasons that explain the dynamics and diversity of
these installations. For example, we found that the companies we ob-
served did not apply any guidelines or formal regulations for tool
configuration, which lead to a certain freedom for the users in con-
figuring their Eclipse installations.

Another fundamental reason for this phenomenon is the project-
based organization of software development , which is highly dy-
namic and diverse itself. Special tools are needed in most projects ,
e. g. PHP development tools or an XSLT editor. These tools are often
not included within default Eclipse IDE, but available as additional
components. A typical project started with one or two developers, but
the core team sometimes called upon other developers as experts for
specific technologies or tasks (e.g. someone who knows a particular
database or a UI design tool). As a consequence of this, the consulted
experts had to synchronize their working environments with those of
their colleagues in order to cooperate with each other.

In addition we found that copying and adapting the working envi-
ronment is a normal way to instruct new team members:

”If a new colleague starts working here, I would advise him to
begin with the standard IDE, and as a starting point for further ex-
ploration, I would show him which extensions I have integrated in
Eclipse could be interesting for him (based on his experience).”

Furthermore, we also observed cross-organizational diffusion of
Eclipse plug-ins based on the ‘copy and adapt’-practice. This was a
result of a semi-outsourcing practice, where developer of different
companies work together on one project.

These observations demonstrate that teams are appropriate for rec-
ommending suitable plug-ins. We discovered in our online survey
that 47% of the respondents mentioned their co-workers and team
members as a source of information concerning useful plug-ins for
a specific work context. 64% even stated they used the Internet for
gathering information (multiple choices were allowed).

In the field of Eclipse, an interesting detail makes this style of
working together possible. Most of the components are published
under licenses which allows users to share these components with
others. This results in an environment in which everyone is entitled

4 Eclipse configuration means the data, describing the footprint of the in-
stalled plug-ins.

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 61

to give away components or complete Eclipse installations ? for ex-
ample to co-workers.

We found that team members utilized this freedom to recommend
or share components, especially when their working context was sim-
ilar to their co-workers’ working contexts.

3 THE DATA OF ECLIPSE CONFIGURATIONS
IN PRACTICE

The Eclipse platform applies an ‘everything is a plug-in’ philosophy
[2]. This means an Eclipse installation is decomposed into hundreds
of plug-ins. We have therefore started to analyze sets or configura-
tions of Eclipse plug-ins used in practice.

In a first step we were interested what the different plug-in sets
look like in practice and whether this data is rich enough to set up
a recommending solution based on it. Even in the small number of
76 configurations (cf. table 1) we were surprised to find 2,429 dif-
ferent plug-ins (4,944 if we take the different versions into account).
The average number of 326 plug-ins per configuration gives a first
impression of the plug-in network complexity of a typical Eclipse
installation.

Table 1. Amount of installed plug-ins in n=76 Eclipse installations.

Overall num. of different plug-ins (disregarding different versions) 2,429
Overall num. of plug-ins (version sensitive) 4,944
Min. num. plug-ins found in an installation 89
Max. num. plug-ins found in an installation 1,008
Average plug-ins per installation 326
Standard deviation σp 190

The Eclipse ecosystem is characterized by a network of compo-
nent vendors. We found that an Eclipse installation usually consists
of plug-ins created by many different vendors. The dependencies of
these plug-ins can be visualized as an acyclic graph (c.f. figure 1).
This shows a complex system of dependencies between plug-ins, but
more importantly it reveals complex dependencies between the dif-
ferent plug-in vendors. This makes it hard to choose certain plug-ins
and at the same time make sure the installation stays executable.

Figure 1. Snapshot of the dependency graph of the 3rd party extension
called ‘Subclipse’, which relies on further plug-ins, created by IBM, Wind

River and Embarcadero Technologies, Prosyst and others.

4 DISCUSSION
Thousands of plug-ins exist for Eclipse by now, which makes the
management of Eclipse installations a complex task. This is espe-
cially important for getting an overview of the most useful plug-ins

and their updates in a specific work context. One usual way to solve
this problem are software product lines. With this approach a distrib-
utor bundles interesting components to a new application for a spe-
cific task [3]. This is especially interesting because software product
line approaches can benefit from existing components. In the field
of Eclipse the job of creating bundles is partly done by the Eclipse
foundation by supplying end-users with default configurations (e.g.
Java Development, Java EE Development, C++ Development) but
users and teams usually adapt these configurations on their own. This
means the work of integrating components into the software, which
was previously done by distributors, is now shifted to the end-users.
On the one hand this gives end-users a new freedom to adapt the
software to their needs, but on the other hand we found that a new
problem of finding appropriate and compatible components has risen.

The obvious way to support integration work of end users might
be to take a look at the Eclipse installations of co-workers who work
in the same context and might already have experience with suitable
plug-ins.

At the workshop we would like to discuss if and how recom-
mender systems could support users in dealing with this complexity
in a similar way as the practice of over-the-shoulder learning [5] we
observed in our empirical study of Eclipse. Although we are inter-
ested in how recommender systems can support the introduction of
new plug-ins which have not yet been adopted by a team member.

The next step for CoEUD will be the implementation of a pro-
totypical, team oriented recommender system for Eclipse plug-ins,
based on our empirical studies. First we want to analyze and com-
pare the configuration data (which also holds the data about the in-
stalled plug-ins) of different users more deeply. In particular we want
to search for patterns in the data of team members as they typically
work in the same context. This data might be extended by informa-
tion which is collected while Eclipse is in use - the upcoming Eclipse
Usage Data Collector5 project is very interesting in this context. In-
formation about the dynamically loaded plug-ins might be of par-
ticular importance, because it shows which plug-ins are really used
and which are merely installed and remain unused. We are aware
that features to enable end-users to tag or rate plug-ins could also be
an interesting source of information on how to support end-users in
adapting their working environment. In this context we are interested
in how recommender systems can include this information or coexist
with systems providing this information.

REFERENCES
[1] Michael Friedewald, H. Dieter Rombach, Petra Stahl, Manfred Broy, Su-

sanne Hartkopf, Simone Kimpeler, Kirstin Kohler, Robert Wucher, and
Peter Zoche, ‘Softwareentwicklung in deutschland, eine bestandsauf-
nahme bestandsaufnahme (software development in germany. a survey)’,
Informatik Spektrum, 24(2), 81–90, (2001).

[2] Erich Gamma and Kent Beck, Contributing to Eclipse: Principles, Pat-
terns, and Plugins, Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 2003.

[3] Linda M. Northrop, ‘Sei’s software product line tenets’, IEEE Softw.,
19(4), 32–40, (2002).

[4] Gunnar Stevens, Sebastian Draxler, and Tobias Schwartz. Ap-
propriation: A work practice perspective to provisioning.
http://www.eclipsecon.org/summiteurope2007/presentations/ESE2007-
Appropriation Perspective to Provisioning.pdf, 2007.

[5] Michael B. Twidale, ‘Over the shoulder learning: Supporting brief infor-
mal learning’, Computer Supported Cooperative Work (CSCW), 14(6),
505–547, (2005).

5 http://www.eclipse.org/epp/usagedata/

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 62

Exploring the Support for

Spoken Natural Language Explanations in Inference Web
Tejaswini Narayanan

1
and Deborah L. McGuinness

2

Abstract

In this position-paper, we have outlined our initial

explorations into provisioning for Spoken Natural Language

Explanations in Inference Web (IW). We present our

motivation for considering speech as an effective modality

for presenting explanations, in terms of the interesting use-

cases that we believe are enabled by the addition of this

modality. We then describe the design and implementation

of our prototype system. We highlight the salient features of

our approach using an illustrative running example.

Author Keywords

Speech user-interfaces, explanation systems, semantic web

1 INTRODUCTION
Inference Web (IW) is a framework for explaining Semantic

Web reasoning tasks [1]. IW leverages Semantic Web

technologies and recommended standards such as the Web

Ontology Language (OWL) [3], and provides a range of

tools to support rich explanations. A reasoning task within

IW is represented by a “Proof”, and is encoded in a proof

interlingua called Proof Markup Language (PML) [2]. A

PML Proof describes the inference steps used to derive an

answer for a proposed query. In addition, a PML Proof can

also contain rich Provenance Metadata, which may be used

in conjunction with the reasoning process captured in the

proof-steps, to generate intuitive explanations and support

follow-up questions.

1.1 Running example: Explaining KSL Wine Agent’s
wine recommendation for a meal

We use the KSL Wine Agent [4] as the running example to

illustrate the features of our prototype. The Wine Agent

leverages a Knowledge-Base (KB) of wines that is

structured using an OWL ontology. Using a logical

reasoning-engine on top of this KB, the Wine Agent can

make recommendations for specific varieties of wine that

pair well with specific varieties of food. The IW

infrastructure can be used to provide explanations for the

recommendations produced by the Wine Agent.

 For example, the Wine Agent may make a recommendation

of a white-wine drink for a Crab-dish based on the following

assertions: (i) It is known that white-wine pairs well with

seafood. (ii) It is known that crab is a type of seafood.

Therefore, white-wine may be a suitable recommendation

for a crab-dish. If this reasoning process is encoded in PML

(together with Provenance Metadata about the sources of the

assertions), then the IW tools can be used to effectively

present an explanation to a curious user of the KSL Wine

Agent, who may be interested in knowing how or why the

system made a specific wine-recommendation.

1.2 Existing support for explanations in IW

The existing support for explanations in IW is provided

through a set of tools. One specific tool that we will discuss

here is called the IW Browser (IW Toolkit, IW Explainer

being other such tools). The IW Browser provides a

mechanism for “browsing” PML proofs on a rendering

surface. The presentation is made more intuitive by

supplying suitable provenance data/metadata to the user

(obtained from the underlying PML Proofs), in the context

of the user‟s browsing operation.

Currently, the IW Browser offers three different „Styles‟ for

presenting proofs and explanations. Each Style enables a

unique set of interactions between the user and the proof

being browsed, thus facilitating easier understanding of the

proof / explanation. The existing Styles are illustrated in

Segments 1–3 in Figure 1.

2 EXPLORING SUPPORT FOR SPOKEN NATURAL
LANGUAGE EXPLANATIONS: THE “SPOKEN” STYLE

We observe that the logic-sentences representing

antecedents/conclusions of a PML Proof in IW are encoded

in Knowledge Interchange Format (KIF). The IW

infrastructure already provides support for textual Natural

Language (English) explanations using a heuristic, case-

driven KIF to English translator. For example, one may note

that the translator component participates in the Narrative

Style rendering of a proof in the IW Browser (Fig 1, Seg 3).

We propose to leverage this existing explanation support

structure in IW, and extend the IW infrastructure to provide

for Spoken Natural Language (English) explanations. We

believe that this extension would enable some interesting

explanation use-cases, viz. (i) Non-literate users (say, in

developing countries) who may not be able read and

comprehend a narrative explanation, can benefit from a

spoken dialogue explanation (ii) Spoken explanations can

also serve as an assistive technology for visually-challenged

users (iii) The “Spoken” Style can effectively complement

the Narrative Style for novice end-users.

1 SV National Institute of Tech., India, email: tejaswini5@yahoo.com

2 Rensselaer Polytechnic Institute, New York, email: dlm@cs.rpi.edu

This work was initiated while the authors were both at the Knowledge

Systems Lab (KSL), Stanford University (Dr. McGuinness, as a senior

research scientist, and Tejaswini Narayanan, as a Summer Visitor)

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 63

mailto:tejaswini5@yahoo.com
mailto:dlm@cs.rpi.edu

3 IMPLEMENTATION BRIEF

We leverage the FreeTTS 1.2 text-to-speech libraries [5] for

integrating spoken natural language explanation support in

the IW infrastructure. We then expose this functionality

through the “Spoken” Proof Style, which is wired into the

IW Browser as an additional Style presentation module.

Segment 4 illustrates the enhanced IW Browser with the

additional “Spoken” functionality.

SELECTED REFERENCES

[1] McGuinness, D.L et. al., Explaining Answers from the Semantic Web:
The Inference Web Approach, Intl. Semantic Web Conference, 2003

[2] McGuinness, D.L et. al., PML 2: A Modular Explanation Interlingua,

Workshop on Explanation-aware Computing (ExaCt-2007), 2007.

[3] McGuinness, D.L et. al., OWL Overview, W3C Recommendation, 2004

[4] KSL Wine Agent, http://onto.stanford.edu:8080/wino/

[5] FreeTTS 1.2, http://freetts.sourceforge.net

Figure 1: IW Browser: Segment 1: HTML Style (Static Presentation), Segment 2: Graphical Style (Dynamic Presentation),

 Segment 3: Narrative Style (Sentential Presentation), Segment 4: New “Spoken” Style (Multi-Modal Presentation)

ECAI 2008 - Workshop on Recommender Systems, Patras, Greece page 64

http://onto.stanford.edu:8080/wino/
http://freetts.sourceforge.net/

	ecairecws08_submission_13.pdf
	ecai08-NLGS.pdf
	response.pdf

	ecairecws08_submission_5.pdf
	ecai2008.pdf
	ReplySheet.pdf

