
a

Artificial Intelligence 152 (2004) 213–234

www.elsevier.com/locate/artint

Consistency-based diagnosis of
configuration knowledge bases ✩

Alexander Felfernig a, Gerhard Friedrich a, Dietmar Jannach a,∗,
Markus Stumptner b

a Universität Klagenfurt, Produktionsinformatik, A-9020 Klagenfurt, Austria
b University of South Australia, Advanced Computing Research Centre, SA 5095 Adelaide, Australi

Received 21 August 2002; received in revised form 23 May 2003

Dedicated to Raymond Reiter, the pioneer of consistency-based diagnosis

Abstract

Configuration problems are a thriving application area for declarative knowledge representation
that currently experiences a constant increase in size and complexity of knowledge bases. Automated
support of the debugging process of such knowledge bases is a necessary prerequisite for effective
development of configurators. We show that this task can be achieved by consistency-based
diagnosis techniques. Based on the formal definition of consistency-based configuration we develop
a framework suitable for diagnosing configuration knowledge bases. During the test phase of
configurators, valid and invalid examples are used to test the correctness of the system. In case such
examples lead to unintended results, debugging of the knowledge base is initiated. Starting from a
clear definition of diagnosis in the configuration domain we develop an algorithm based on conflicts.
Our framework is general enough for its adaptation to diagnosing customer requirements to identify
unachievable conditions during configuration sessions.

A prototype implementation using commercial constraint-based configurator libraries shows the
feasibility of diagnosis within the tight time bounds of interactive debugging sessions. Finally, we
discuss the usefulness of the outcomes of the diagnostic process in different scenarios.
 2003 Elsevier B.V. All rights reserved.

Keywords:Diagnosis; Configuration

✩ Revised and extended version of A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, Consistency-based
diagnosis of configurator knowledge bases, in: W. Horn (Ed.), Proc. 14th European Conference on Artificial
Intelligence (ECAI-2000), Berlin, Germany, IOS Press, Amsterdam, 2000, pp. 146–150. The authors are listed in
alphabetical order.

* Corresponding author.
E-mail address:dietmar@ifit.uni-klu.ac.at (D. Jannach).

0004-3702/$ – see front matter  2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0004-3702(03)00117-6



214 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

1. Introduction
Knowledge-based configuration systems have a long history as a successful AI
application area. These systems have progressed from their rule-based origins to the
use of higher level representations such as various forms of constraint satisfaction [12,
19], description logics [20], or functional reasoning [24]. As a result of the increased
complexity and size of configurator knowledge bases, the user of a configuration
tool is increasingly challenged to find the source of the problem whenever it is not
possible to produce a working configuration, i.e., the configuration process is aborted.
Ultimately, the cause of an abort is either an incorrect knowledge base or unachievable
requirements.

In this paper, we will focus on the situation of an engineer working on the maintenance
of a knowledge base, searching for failures while performing test configurations.
Therefore, the goal is to examine what part of the knowledge base itself may have
produced the problem and provide adequate automated support to locate the true
source of the inconsistency. This validation phase will take place after the initial
specification of the knowledge base or later in the lifecycle when the knowledge base
is updated to meet new or altered application requirements (e.g., new component types or
regulations).

It is the fact that the knowledge base is specified in some high-level, declarative
formalism that allows us to employ model-based diagnosis techniques using positive
and negative examples for this purpose. This means that positive configuration examples
should be accepted by the configurator whereas negative examples should be rejected.
The examples therefore play a role much like what is called a test case in software
engineering: they provide an input such that the generated output can be compared to the
tester’s expectations. Once a test has failed, diagnosis can be used to locate the parts of
the knowledge base responsible for the failure. Such parts will typically be constraints
that specify legal connections between components, or domain declarations that limit
legal assignments to attributes. These constraints and declarations, written as logical
sentences, will serve as diagnosis components when we map the problem to the model-
based diagnosis approach.

A second type of situation where diagnosis can be used is the support of the actual
end user where the user’s requirements are unfulfillable even though the knowledge
base is correct, e.g., because she/he placed unrealistic restrictions on the system to be
configured.

The rest of the paper is organized as follows. We first present an example to introduce
the problem domain and the employed configuration terminology. We then formalize the
configuration task in terms of a domain theory and system requirements, define what
we understand by a valid configuration, and use the formalization to express the notion
of model-based diagnosis as it applies to the configuration domain. After that, we give
an algorithm for computing diagnoses based on positive and negative example sets, and
explore the influence of different types of examples. We also examine the “reverse” use of
diagnosis for identifying faults in requirements. In the final sections, we present the results
of a prototype implementation, and close with a discussion of related work.



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 215

2. Motivating example

t

We introduce our concepts using a small part of a configuration knowledge base
from the area of configurable personal computers. We will insert a typical failure in this
knowledge base and show how this failure can be diagnosed.

As a paradigm for modeling configuration problems we rely on the component-por
modelof configuration described in [21] because of its applicability for different domains
and because it serves as a basis in many commercial configuration systems [12,17,19].
Following this paradigm, a configurable system is composed of predefined components
which are further characterized by attributes. Individual components can be interconnected
via predefined connection points (called ports). Apart from the description of the available
components, their attributes, the permitted range of values for these attributes, and the
connection points, a configurator knowledge base typically contains constraints that
describe the set of legalproduct constellations. In the following, we employ first order logic
as a representation language in order to facilitate a clear and precise presentation. First
order logic allows us to describe general concepts for configuration. In practice, decidable
variants are applied.

2.1. Defining the faulty knowledge base and the test cases

In our example, a PC motherboard can host up to 4 CPUs and exactly one chipset. The
physical insertion of the parts is modeled via ports. We omit the usage of attributes of
components like (CPU clock rate) in the example in order to keep the presentation short
(see Fig. 1). Note that this figure only represents the structureof the available components,

Fig. 1. Example problem.



216 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

i.e., in a configuration several instances (sometimes called individuals) of a component type

the

pe

ipset
can occur.
We describe the available component types and their named interconnection points

with the functions typesand ports, respectively, i.e., the knowledge base consists of the
following definitions:

types= {motherboard,cpu-486,cpu-586,chipset-1,chipset-2},
ports(motherboard) = {chipset,cpu-1,cpu-2,cpu-3,cpu-4},
ports(cpu-486) = {motherboard}, ports(cpu-586) = {motherboard},
ports(chipset-1) = {motherboard},
ports(chipset-2) = {motherboard}.

Typically, we will use a limited set of predicate symbols for associating types, connections
and attributes with individual components: In our example, an individual component
instance c is associated with a type t by a literal type(c, t). We represent a connection
by a literal conn(c1,p1, c2,p2) where c1 and c2 are component identifiers and p1 and p2
are those ports of the involved components where a connection is established.

The constraints that hold in our domain are composed from the above-mentioned
predicate symbols and are given below. We use a logic programming notation where
uppercase letters represent variable symbols.

Constraint C1. “If there is a CPU-486 on the motherboard then a chipset of one of
given types must be inserted, too.”

∀M,C: type(M,motherboard) ∧ type(C,cpu-486)∧
conn(C,motherboard,M,_) ⇒

∃S: conn(S,motherboard,M,chipset)∧
(type(S,chipset-1) ∨ type(S,chipset-2)).

Constraint C2. “If there is a CPU-586 on the motherboard, only a chipset of ty
chipset-2 is allowed”.

∀M,C: type(M,motherboard) ∧ type(C,cpu-586)∧
conn(C,motherboard,M,_) ⇒

∃S: conn(S,motherboard,M,chipset) ∧ type(S,chipset-2).

Constraint C3. “The chipset port of the motherboard can only be connected to a ch
of type chipset-1”.

∀M,C: type(M,motherboard) ∧ conn(C,_,M,chipset) ⇒ type(C,chipset-1).

As it turns out, this constraint is faulty because it is too strong. This constellation could
have come about because the chipset type chipset-2 was newly introduced to the knowledge



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 217

base, and C3 was not altered to accommodate that. The correct version of this constraint

(C3ok) would also permit chipsets of type chipset-2, i.e., Constraint C3ok:

∀M,C: type(M,motherboard) ∧ conn(C,_,M,chipset) ⇒
type(C,chipset-1) ∨ type(C,chipset-2).

In the following, we will denote the faulty knowledge base by KBfaulty = {C1,C2,C3}.
In addition, a set of application-independent constraints denoted by CBasic is included

in the domain description, specifying, e.g., that connections are symmetric, that a port
can only be connected to exactly one other port, and that components have a unique type
from the set of available types described by the function types. Furthermore we employ
the unique name assumption and assume that all component attributes are single-valued.
Remember that a predefined set of predicate symbols (in our example type/2, conn/4) is
used to describe configurations.

After defining the knowledge base, the test engineer can validate the returned results
of the configurator for different (positive and negative) examples. The first positive
example provided is a motherboard with two CPUs plugged in where one is of type
cpu-486 and one of type cpu-586. We denote such a positive example as e+. More
formally,

e+ = {∃M,C1,C2:
type(M,motherboard) ∧ type(C1,cpu-486) ∧ type(C2,cpu-586)∧
conn(C1,motherboard,M,cpu-1) ∧ conn(C2,motherboard,M,cpu-2)}.

Note that examples can either be partial or complete configurations. The example above
is a partial one, as more components and connections must be added to arrive at a
finished configuration, i.e., we need at least one chipsetin a complete configuration. Let
us suppose that the test engineer provided this positive example in order to test that both
types of CPUs can still be used in configurations after he/she had changed the knowledge
base.

Next, a negative example is provided, comprising a motherboard with two CPUs of type
cpu-486 and cpu-586 as it was the case in e+ but in addition a chipset of type chipset-1 is
also connected to the motherboard. We denote such a negative example as e−, where such
an example should be inconsistent with the knowledge base. This example was specified
by the test engineer to validate the alterations made after introducing the new type of
chipsets, knowing that the new chipset-type is required when a CPU of type cpu-586 is
in the configuration.

e− = {∃M,C1,C2,CS1:
type(M,motherboard) ∧ type(C1,cpu-486) ∧ type(C2,cpu-586)∧
type(CS1,chipset-1) ∧ conn(C1,motherboard,M,cpu-1)∧
conn(C2,motherboard,M,cpu-2) ∧ conn(CS1,motherboard,M,chipset)}.



218 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

2.2. Finding an explanation for the unexpected behavior
Testing the knowledge base with e− results in the expected contradiction, i.e., KBfaulty∪
e− ∪ CBasic is inconsistent. However, KBfaulty ∪ e+ ∪ CBasic is also inconsistent which is
not intended. The question is which of the application specific constraints {C1,C2,C3} are
faulty. When adopting a consistency-based diagnosis formalism, the constraints C1, C2,
and C3 are viewed as components and the problem can be reduced to the task of finding
those constraints which, if canceled, restore consistency.

If we consider the positive example e+, we note that {C2,C3} ∪ e+ ∪ CBasic is
contradictory. It follows that C2 or C3 has to be canceled in order to restore consistency,
i.e.,

{C1,C2} ∪ e+ ∪ CBasic is consistent and

{C1,C3} ∪ e+ ∪ CBasic is consistent.

However, if we employ the negative example we recognize that

{C1,C3} ∪ e− ∪ CBasic is also consistent

which has to be avoided. Therefore, in order to repair the knowledge base, {C1,C3} has
to be extendedfor restoring inconsistencywith e−. To be able to accept “C2 is faulty” as
a diagnosis we have to investigate whether such an extension EX can exist. To check this,
we start from the property that

{C1,C3} ∪ e− ∪ EX∪ CBasic must be inconsistent

(note that {C1,C3} ∪ EX∪ CBasic must be consistent) and therefore

{C1,C3} ∪ EX∪ CBasic|= ¬e−,

i.e., the knowledge base has to imply the negation of the negative example. In addition, this
knowledge base has also to be consistent with the positive example: {C1,C3} ∪ e+ ∪EX∪
CBasic is consistent.

Therefore, {C1,C3} ∪ EX ∪ e+ ∪ ¬e− ∪ CBasic would have to be consistent which is
not the case for our example: e+ ∪ ¬e− implies that the slot of a motherboard cannot be
connected to a chipset of type chipset-1 connected whereas {C1,C3}∪e+ ∪CBasicrequires
a connection to a chipset of exactly that type.

Consequently, the diagnosis “C2 is faulty” is rejected. Note that in the case in which we
removed C3, the knowledge base {C1,C2} is inconsistent with e−, i.e., “C3 is faulty” can
be accepted as a diagnosis.

These concepts will be defined and generalized in the following sections. The resulting
consistency-based framework for configuration and diagnosis of configuration knowledge
bases will also give us the ability to identify multiple faults given sets of multiple examples.

3. Defining configuration and diagnosis

In practice, configurations are built from a predefined catalog of component types for
a given application domain. These component types are described through their properties



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 219

(attributes) and connection points (ports) for logical or physical connections to other

components, a view of configuration problems that is well-established both in the academic
community [9,21,26] and in practical industrial application [12,17,19].

An actual configuration problem has to be solved according to some set of specific user
requirements SRSdescribing, e.g., additional constraints or initial partial configurations.
An individual configuration (result) consists in our example of a set of components,
a listing of established connections and their attribute values. Such configurations are
described by positive ground literals. In the previous example the predicates conn/4 and
type/2 are employed without limiting the generality of our approach. Depending on the
application domain other predicates can be used, e.g., to specify attribute assignments or
ports that have to remain unconnected.

Definition 1 (Configuration problem). In general we assume a configuration problem is
described by a triple (DD,SRS,CONL) where DD and SRSare logical sentences and
CONL is a set of predicate symbols.

DD (Domain Description) represents a configuration knowledge base, and SRSspecifies
the particular system requirements which define an individual configuration problem
instance. A configuration CONF is described by a set of positive ground literals whose
predicate symbols are taken from CONL.

Example. In the domain described in the previous section, DD is given by the union
of the specification of types and ports with the set of constraints {C1,C2,C3ok} ∪
CBasic,CONL= {type/2,conn/4}, and the set e+ can be seen as a particular set of system
requirements. In this example the system is specified by explicitly listing the set of required
key components. A configuration for this problem is given by

CONF1 = {
type(m,motherboard). type(c1,cpu-486). type(c2,cpu-586).

type(cs,chipset-2). conn(c1,motherboard,m,cpu-1).

conn(c2,motherboard,m,cpu-2). conn(cs,motherboard,m,chipset).}.

Note that the above configuration CONF1 is consistent with SRS∪ DD. In general, we
are interested only in such consistent configurations.

Definition 2 (Consistent configuration).Given a configuration problem (DD,SRS,CONL),
a configuration CONF is consistent iff DD ∪ SRS∪ CONF is satisfiable.

This intuitive definition allows determining the validity of partial configurations,
but does not require the completeness of configurations. For example, CONF1 above
constitutes a consistent configuration, but so would e+ alone if we view the existential
quantification as Skolem constants.

As we see, for practical purposes, the consistency of configurations is not enough.
It is necessary that a configuration explicitly includes all needed components (and their
connections and attribute values), in order to assemble a correctly functioning system.



220 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

As an example, if we consider the needed components, which are described by type

facts, we want to ensure that all these facts are explicitly listed in the configuration
CONF and there are no spurious components which are not listed there. In other words,
if we want to determine the validity of a configuration, the whole description of the
configuration (in our example all the type and conn predicates) must be contained in
CONF. A partial configuration like e+ will be consistent according to our definition, but
not a valid configuration in reality, because a correct system requires a chipset component
(see constraints C1 and C2).

We need to introduce an explicit formula for each predicate symbol in CONL—the
set of symbols used to describe configurations—to guarantee this completeness property.
Such a set of completeness axioms assure that we can deduce the negation of all possible
instances of the literals whose predicate symbol is contained in CONL except for those
positive ground literals which are explicitly mentioned in CONF. Thus CONF joined with
the completeness axioms defines a complete theory with respect to the predicate symbols
contained in CONL.

In order to stay within first order logic, we model the property by first order formulae.
However, other approaches, e.g., based on logics with nonstandard semantics, are possible.

For our example we have to add the following completeness axioms:

type(X,Y ) ⇒
( ∨

Z∈CONF

type(X,Y ) = Z

)
,

conn(V ,W,X,Y ) ⇒
( ∨

Z∈CONF

conn(V ,W,X,Y ) = Z

)
,

where
∨

Z∈CONF is interpreted as a macro which is expanded. The result of this expansion
is an or-expression containing all the elements of CONF.

These two sentences ensure that if there is a component or a connection described by a
(grounded) typeor connpredicate, it has to be contained in CONF, i.e., there is a matching
predicate Z contained in CONF. Stating it conversely, all instances of the typeand conn
predicates which are not explicitly described in CONF are negated.

For CONF1 and the typepredicate the expanded completeness axiom results in

type(X,Y ) ⇒
(type(X,Y ) = type(m,motherboard)) ∨ (type(X,Y ) = type(c1,cpu-486))∨
(type(X,Y ) = type(c2,cpu-586)) ∨ type(X,Y ) = type(cs,chipset-2)∨
(type(X,Y ) = conn(c1,motherboard,m,cpu-1))∨
(type(X,Y ) = conn(c2,motherboard,m,cpu-2))∨
(type(X,Y ) = conn(cs,motherboard,m,chipset)).

Note that we can omit three of the equalities on the right-hand side of the implication as
they are obviously unsatisfiable.

We denote the configuration CONFextended by completeness axioms with ĈONF.



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 221

Definition 3 (Valid configuration). Let (DD,SRS,CONL) be a configuration problem.

A configuration CONF is valid iff DD ∪ SRS∪ ĈONF is satisfiable.

Having completed our definition of the configuration task, we can now try to find
the sources of inconsistencies in terms of model-based diagnosis (MBD) terminology.
Generally speaking, the MBD framework assumes the existence of a set of components
(whose incorrectness can be used to explain the error), and a set of observations that specify
how the system actually behaves. Following the exposition given in the introduction, the
role of components is played by the elements of DD, while the observations are provided
in terms of (positive or negative) configuration examples.

Definition 4 (CKB-Diagnosis Problem). A CKB-Diagnosis Problem(Diagnosis Problem
for a Configuration Knowledge Base) is a triple (DD,E+,E−) where DD is a configura-
tion knowledge base, E+ is a set of positive and E− a set of negative configuration exam-
ples. The examples are given as sets of logical sentences. We assume that each example on
its own is consistent.

The two example sets serve complementary purposes. The goal of the positive examples
in E+ is to check that the knowledge base will accept correct configurations; if it does
not, i.e., a particular positive example e+ leads to an inconsistency, we know that the
knowledge base as currently formulated is too restrictive. Conversely, a negative example
serves to check the restrictiveness of the knowledge base; negative examples correspond
to real-world cases that are configured incorrectly, and therefore a negative example that is
accepted means that a relevant condition is missing from the knowledge base.

Typically, the examples will of course consist mostly of sets of literals whose predicate
symbols are in CONL. (If we want to test an example w.r.t. specific user requirements, we
include these requirements in the example definition.) In situations where these examples
are intended to be complete, the special completeness axioms must be added. If an example
is supposed to be a complete configuration, diagnoses will not only help to analyze
cases where incorrect components or connections are produced in configurations, but also
cases where the knowledge base requires the generation of superfluous components or
connections. The ability to give partial configurations as examples is important since if a
test case can be described as a partial configuration, a drastically shorter description may
suffice compared to specifying the complete example that, in larger domains, may require
thousands of components to be listed with all their connections [12].

Taking the view of consistency-based diagnosis, a problem in the knowledge base will
be expressed through an inconsistency between DD and the positive examples. A diagnosis
will then indicate a set of possibly faulty sentences whose removal from DD will restore
consistency. Conversely, if the removal of these sentences leads to a negative example e−
becoming consistent with the knowledge base, we have to find an extension that, when
added to DD, restores the inconsistency for all such e−.

Definition 5 (CKB-diagnosis). A CKB-diagnosis for a CKB-Diagnosis Problem (DD,E+,

E−) is a set S ⊆ DD of sentences such that there exists an extension EX, where EX is a set
of logical sentences, such that



222 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

• DD − S ∪ EX∪ e+ consistent ∀e+ ∈ E+

n

• DD − S ∪ EX∪ e− inconsistent ∀e− ∈ E−.

A diagnosis will always exist under the (reasonable) condition that positive and negative
examples do not interfere with each other.

Proposition 1. Given a CKB-Diagnosis Problem(DD,E+,E−), a diagnosisS for
(DD,E+,E−) exists iff∀e+ ∈ E+: e+ ∪ ∧

e−∈E−(¬e−) is consistent.

From here on, we refer to the conjunction of all negated negative examples as NE, i.e.,
NE= ∧

e−∈E−(¬e−).

Proof. (⇒) Since DD −S ∪EX∪ e− is inconsistent for all e− ∈ E−, it follows that ∀e− ∈
E−: DD − S ∪ EX |= ¬e−. Because of the definition of diagnosis and the monotonicity
of standard logic, it holds that ∀e+ ∈ E+: DD − S ∪ EX∪ e+ |= NE. Consequently, since
DD−S ∪EX∪e+ is consistent for all e+ ∈ E+, the consistency of DD−S ∪EX∪e+ ∪NE
for all e+ ∈ E+ follows, which implies the consistency of ∀e+ ∈ E+: e+ ∪ NE.

(⇐) Given that ∀e+ ∈ E+: e+ ∪ NE is consistent, it follows directly that there exists a
diagnosis S where S = DD and EX= NE. ✷

In principle, the definition of CKB-diagnosis S is based on finding an extension EX
of the knowledge base that fulfills the consistency and the inconsistency property of the
definition for the given example sets. However, the proposition above helps us insofar as it
gives us a way to characterize diagnoses without requiring the explicit specification of the
extension EX.

Corollary. S is a diagnosis iff∀e+ ∈ E+: DD − S ∪ e+ ∪ NE is consistent.

The following remark relates configuration and diagnosis for configuration knowledge
bases.

Remark. Let e+ be partitioned into two disjoint sets e+
CONF and e+

SRSwhere e+
CONF is

a set of positive ground literals whose predicate symbols are in the set of CONL and
e+

SRSrepresents system requirements (if some are specified in conjunction with the positive
example).

S is a diagnosis for(DD,E+,E−) iff ∀e+ ∈ E+: e+
CONF is a consistent configuratio

for (NE∪ DD − S, e+
SRS,CONL).

Note that, if the completeness axioms have been added to e+
CONF then e+

CONF is a valid
configuration for (NE∪ DD − S, e+

SRS,CONL).



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 223

4. Computing diagnoses
The above definitions allow us to employ the standard algorithms for consistency-based
diagnosis, with appropriate extensions for the domain. In particular, we use Reiter’s Hitting
Set algorithm [23]. The algorithm is based on the concept of conflict sets, since these
provide an effective mechanism for focusing the search for diagnoses.

Definition 6 (Conflict set). A conflict set CS for (DD,E+,E−) is a set of elements of
DD such that ∃e+ ∈ E+: CS∪ e+ ∪ NE is inconsistent. If e+ ∈ E+: CS∪ e+ ∪ NE is
inconsistent, we also say that e+ induces CS.

In the algorithm we employ a labeling that corresponds to the labeling of the original
HS-DAG [16,23], i.e., a node n is labeled by a conflict CS(n) and edges leading away from
n are labeled by logical sentences s ∈ CS(n). The set of edge labels on the path leading
from the root to n is referred to as H(n). In addition, each node is labeled by the set of
positive examples CE(n) that have been found to be consistent with DD − H(n) ∪ NE
during the generation of the DAG. The reason for introducing the label CE(n) is the fact
that any e+ that is consistent with a particular DD − H(n) ∪ NE is obviously consistent
with any H(n′) such that H(n) ⊆ H(n′).

Therefore any e+ that has been found consistent in step 1(a) below does not need to
be checked again in any nodes below n. Since we generate a DAG, a node n may have
multiple direct predecessors (we denote that set by preds(n) from here on), and we will
have to combine the sets CE(m) for all direct predecessors m of n. The consistent examples
for a set of nodes N (written CE(N)) are defined as the union of the CE(n) for all n ∈ N .

Algorithm (schema). In: DD,E+,E−; Out: a set of diagnoses S.

(1) Use the Hitting Set algorithm to generate a pruned HS-DAG D for the collection F of
conflict sets for (DD,E+,E−). The DAG is generated in a breadth-first manner since
we are interested in generating diagnoses in order of their cardinality.
(a) Every theorem prover call TP(DD − H(n),E+ − CE(preds(n)),E−) at a node

n corresponds to a test of whether there exists an e+ ∈ E+ − CE(preds(n)) such
that DD − H(n) ∪ e+ ∪ NE is inconsistent. In this case it returns a conflict set
CS⊆ DD − H(n), otherwise it returns ok.
Let ECONS⊆ E+ − CE(preds(n)) be the set of all e+ that have been found to be
consistent in the call to TP.

(b) Set CE(n) := ECONS∪ CE(preds(n)).
(2) Return {H(n) | n is a node of D labeled by ok}.

Complete versus partial Examples. As mentioned before, examples (negative and
positive) can be complete or partial. Previously we stated that complete examples are
in principle (if we neglect the higher effort needed for their specification) preferable for
diagnosis since they are more effective. We will now show that this is so because, under
certain assumptions for the language used in the domain description, diagnosing a complete
example will always result in only singleton conflicts.



224 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

Proposition 2. Given an examplee+ (consisting of a configuration and the corresponding

nflict

completeness axioms) from a set of positive examplesE+ for a CKB-diagnosis problem
(DD,E+,E−) such that DD uses only predicates from CONL, then any minimal co
set induced bye+ for (DD,E+,E−) is a singleton.

Proof (Sketch). e+ corresponds to a configuration ĈONF. Because of the completeness
axioms this theory is logical complete regarding literals from CONL. It follows that there
exists exactly one H(erbrand)-model. We partition DD into the set of sentences which are
inconsistent with e+, i.e., USATS= {s | s ∈ DD, e+ ∪ s ∪NE is inconsistent}, and the set of
sentences which are consistent with e+, i.e., SATS= {s | s ∈ DD, e+∪s∪NE is consistent}.
Each sentence in SATSis satisfiable by the same unique H-model. Consequently, e+ ∪ {s |
s ∈ SATS} ∪ NE is satisfiable by this H-model. It follows that this set does not contain
a conflict set. Therefore, USATSis the set of all minimal conflicts induced by e+, and
therefore all minimal conflicts are singletons. ✷

The practical implications are that for any given complete positive example, we can limit
ourselves to checking the consistency of the elements s of DD with e+ ∪ NE individually,
because any s found to be inconsistent constitutes a conflict. Conversely, any s found to be
consistent is not in the induced minimal conflict sets of e+.

5. Diagnosing requirements

Even once the knowledge base has been tested and found correct, diagnosis can still play
a significant role in the configuration process, although in a different workplace situation.
Instead of an engineer testing an altered knowledge base, we are now dealing with end
users who are using the assumed-to-be-correct knowledge base for configuring actual
systems. During their sessions, such users frequently face the problem of requirements
being inconsistent because they are infeasible given the capabilities of the system to be
configured. In such a situation, the diagnosis approach presented here can now support
the user in finding which of his/her requirements produces the inconsistency. Formally,
the altered situation can be easily accommodated by swapping requirements and domain
description in the definition of CKB-Diagnosis. Formerly, we were interested in finding
particular sentences from DD that contradicted the set of examples. Now it is the user’s
system requirements SRSwhich contradict the domain description. The validated and
therefore consistent domain description is used in the role of an all-encompassing partial
example for correct configurations.

Definition 7 (CREQ-diagnosis problem). A configuration requirements diagnosis (CREQ-
Diagnosis) problem is a tuple (SRS,DD), where SRSis a set of system requirements and
DD a configuration domain description. A CREQ Diagnosis is a subset S ⊆ SRSsuch that
SRS− S ∪ DD is consistent.

Remark. S is a CREQ diagnosis for (SRS,DD) iff S is a CKB-diagnosis for (SRS, {DD},
{}).



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 225

Example. Given the correct knowledge base KBok = {C1,C2,C3ok} from Section 2,

consider a simple example where the user specifies his/her specific requirements SRS1 =
{req1, req2, req2} in terms of a partial configuration:

req1: one CPU-586 on slot cpu-1.

req2: one CPU-586 on slot cpu-2.

req3: one chipset of type chipset-1 on the chipsetslot.

Solving the corresponding CREQ-Diagnosis Problem (SRS1,KBok) results in two minimal
diagnoses {req1, req2} and {req3}, i.e., either remove both CPUs or change the type of the
chipset. Given these results, the (interactive) user of the diagnosis system is enabled to
discriminate among the diagnoses based on his/her personal preferences.

6. Implementation and practical experiences

In order to test the practical applicability of our diagnosis approach for debugging
faulty configuration knowledge bases we have implemented the JCONDIAG system on
top of ILOG’s JConfigurator1 libraries. These commercially available libraries provide
a Java-based, object-oriented framework for the development of configurator applications
based on Generative Constraint Satisfaction[12,17,19]. Our practical experiences from
building configuration systems for various domains (e.g., telecommunication switches, IP-
based virtual private networks [11], or facility equipment) showed the practicability of the
approach.

In particular, we found that seamless integration of the diagnosis component with the
core configurator and its basic explanation- and tracing facilities is a key requirement for
successful utilization of the system. In fact, the implementation of JCONDIAG fits the
development paradigm of JConfiguratorin a way that no additional development effort
is needed for defining the knowledge base in a format ready for diagnosis and, on the other
hand, is generic enough to leave the knowledge engineer sufficient degrees of freedom in
defining the test examples. As a result, the test cases can be defined in multiple different
ways, e.g., by giving key components or partial configurations, specifying the problem
in terms of constraints, or by loading existing configurations from external sources for
regression testing. Finally, our experiments showed that the performance of the diagnosis
system matches the hard requirements on response times for interactive debugging and
maintenance sessions.

In the following, we will discuss some details of the implementation of the system, in
particular with respect to conflict generation and will then show the results of benchmark
tests that were performed for a typical configuration problem, with the problem parameters
being varied along several dimensions.

1 See ILOG JConfigurator 1.0 Reference Manual, http://www.ilog.com.



226 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

6.1. Implementation and computation of conflicts
JCONDIAG is available as a Java library that implements the diagnosis algorithm
described in the previous section. The implementation handles multiple test examples. It
incorporates the pruning techniques described in [23] and manages conflict reuse. The
search depth can be limited to a certain level, thus restricting both the search time, and the
maximum cardinality of the diagnoses (to a size still comprehensible for the knowledge
engineer). In addition, the design of the library allows the integration of other configuration
reasoners than JConfiguratorby the usage of a defined interface (compare TP in previous
section).

Although the proposed diagnosis technique does not require the computation of minimal
conflict sets, the size of the computed conflict sets heavily influences the run-time behavior
for the algorithm. In [10], an approach for handling this problem is proposed that relies on
iterative focusing based on hierarchical diagnosis for situations where no minimal conflict
sets are available. Within JCONDIAG, (minimal) conflict detection is based on Junker’s
QUICKXPLAIN [18] algorithm. QUICKXPLAIN is a non-intrusive conflict detector that gets
its efficiency by recursively partitioning the problem into subproblems of half the size
and skipping those that do not contain an element of the propagation-specific conflict.
According to [18], this algorithm needs O(n · log(k+1)+k2) checks to compute a minimal
conflict of size k out of n constraints, thus improving the ideas given in, e.g., [7].

6.2. Test results

While there are many benchmark problems, metrics, and generators available for
standard (static and/or binary) Constraint Satisfaction Problems, up to now there are no
benchmark problems available for the configuration domain. Although problem solving is
based on Constraint Satisfaction in our problem setting, configuration problems typically
exceed the capabilities of standard CSP representations by requiring, e.g., variable
generation during the search process and extensible domains for connection constraints.
Therefore, we employed a generic and parameterizable example problem that—although
simple—captures the main characteristics of configuration problems and is comprehensible
enough for analysis purposes.

The configuration and diagnosis problem.The sample problem is similar to the
configuration problem described in Section 2, which consists of a framewith a predefined
set of connection points (ports) onto which modulesof different types can be mounted,
whereby each module can be connected to exactly one of the ports and vice versa. The
configuration goal is to place exactly one module of a specific type at each of the available
ports. The configuration knowledge baseconsists of a set of constraints that describe
legal combinations of modules that are connected to the frame. Consequently, the sample
configuration problem can be parameterized by varying

• the number of ports,
• the number of available module types, and
• the number of constraints and possible solutions (i.e., the tightness of the problem).



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 227

In the experiments, we varied the tightness of the configuration problem by assigning

weights to the individual module types and restricting the upper and lower bounds of the
sum of the weights of all modules instances that are included in a valid configuration. Such
restrictions are typical in configuration problems and are referred to as resourceconstraints.
Consequently, the overall running time needed for consistency checking and solution
search during the diagnostic process increases with the time the underlying constraint
solver needs for finding a solution or detecting that there is none. Thus, the running
time also depends on the (default) search strategy of the constraint solver. Obviously, the
time needed for diagnosis only remains constant when increasing the complexity of the
configuration problem itself, since an increase of problem complexity will not result in
additional diagnoses nor a need for additional consistency checks as long as a solution for
the problem exists.

Therefore, in the running time numbers presented below we refer to a setting where
resource constraints are excluded. The set of constraints in the knowledge base for the
experiments are (a) the generated faulty constraints needed for inducing the diagnoses, and
(b) a parameterizable number of constraints that are not contained in any minimal diagnosis
but influence the theoretical number of possible diagnoses.

Without any constraints and given m module types and p ports, the number of possible
solutions is mp.

This example problem knowledge base is depicted in Fig. 2(a), an example configura-
tion solution for a problem with four ports is shown in Fig. 2(b).

In order to test the diagnosis algorithms in various problem settings we developed a
test case generator that both creates specific configuration problem instances as well as a
corresponding diagnosis problem, where this diagnosis problem can be parameterized by
varying

• the number of resulting minimal diagnoses,
• the maximum cardinality of the diagnoses, and
• the number of (positive) test examples.

The test case generator both constructs the configuration problem with its constraints as
well as one partial positive example (inconsistent positive) that—in combination with

Fig. 2. Configuration problem for experiments.



228 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

Table 1

Varying the cardinality of diagnoses (time in seconds)

Card. Conflict Config. Diagnosis Overall
[secs] [secs] [secs] [secs]

1 0.21 0.41 1.28 1.90
2 0.36 0.44 1.30 2.10
3 0.50 0.50 1.32 2.32
5 0.76 0.60 1.44 2.80
7 1.15 0.62 1.58 3.35

10 1.51 0.79 1.68 3.98

the constraints—is not accepted by the configurator. Moreover an arbitrary number of
other positive examples that are consistent with the knowledge base are generated. The
inconsistent positive example and the knowledge base are constructed in a way that at
least one of the diagnoses has exactly the specified maximum cardinality. Moreover, the
generator can be parameterized to produce completetest examples such that only singleton
conflicts (see Section 4) will arise.

Note that we do not use negative examples in our experiments since—according to
our approach—these examples are included in the knowledge base in negated form, such
that only the time needed for configuration and consistency checking will slightly increase
but not the time for diagnosis generation (i.e., HS-DAG generation without consistency
checking).

Results. Table 1 shows the running times of our experiments in different problem
settings. The overall time for diagnosing a problem can be split into

• time needed for consistency checking (i.e., solution search for the configuration
problem),

• time for conflict generation, and
• diagnosis time.

The experiments were run on a standard Personal Computer (Pentium III, 256 MB RAM)
and Java JDK 1.3.1., with all generated problems being successfully solved.

Table 1 shows the running times for finding a single diagnosis with varying cardinalities.
The configuration problem consisted of 50 ports, 100 module types and 50 additional,
non-faulty constraints, which is a reasonable number in real-world sales configuration
applications. The tests were run using 10 additional (non-faulty) examples. The search
problem itself is underconstrained which is a typical situation for configuration problems;
decreasing the number of possible solutions will result in an increase of the configuration
time. Note that in this test case, partial examples were used, which would be characteristic
for an interactive debugging scenario.

We do not list outcomes for diagnosis for complete examples, which is the scenario
for regression testing, i.e., the knowledge engineer checks whether former configurations
are still working after maintenance activities. According to Section 4, we do not need
to generate a hitting set DAG for this problem, but can instead check the knowledge



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 229

Table 2

Varying cardinality and number of diagnoses (time in seconds)

MC AC #diags Conflict Config. Diagnosis Overall
[secs] [secs] [secs] [secs]

1 1 3 0.11 0.95 1.54 2.60
1 1 5 0.12 0.98 1.58 2.68
3 2 3 0.16 0.87 1.71 2.74
4 2 5 0.51 1.10 1.58 3.19

10 4 3 1.47 1.48 2.35 5.30
6 3 5 2.20 1.85 3.60 7.65

base constraints individually and simply compute the union of the violated constraints of
all examples. In a typical debugging scenario the diagnoses will typically both contain
constraints that are immediately violated by the test example and constraints whose
faultiness can only be detected by propagation or solution search given partial examples.

In Table 2 we will show some excerpts from our test cases with varying numbers of
diagnoses and their cardinalities. The configuration problem is the same as for the first set
of experiments. Within the table we also show the maximum (MC) and average cardinality
(AC) of the computed diagnoses.

6.3. Analysis

JCONDIAG shows promising running times for the described problems as an additional
tool that supports the knowledge engineer in focusing his debugging efforts for knowledge
bases of realistic problem sizes. The system guides the user in detecting errors of certain
types (e.g., overly restrictive or contradictory constraints) that cannot be found using
conventional debugging and trace facilities. Note that syntax errors or inconsistent product
models, e.g., constraints on non-existing ports or component types, are detected by the
underlying configurator software using conventional techniques.

The main influences on the overall diagnosis time are—besides size and number of the
diagnoses—the configuration problem itself and the number and size of the test cases: each
consistency check for an example means starting a search for a solution to the configuration
problem because we allow the user to specify partial examples. We have limited the listed
results to cases where the outcomes of the diagnostic process have a comprehensible size:
listing too many diagnoses or diagnoses of very high cardinality will not help the engineer
very much if no additional hints or error probabilities are attached to the constraints. In
practical settings, the resulting diagnoses have a cardinality that is small enough so that an
engineer who knows which portions of the knowledge base were recently changed can still
discriminate between them.

In fact, an interesting outcome of our experiments is that in typical declarative
configuration knowledge bases there are only few interdependencies among constraints,
i.e., the size of the minimal conflicts is typically very small (up to three or four constraints).
This results in the effect that the number of returned diagnoses is limited and still
comprehensible for the knowledge engineer such that further discrimination among the



230 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

diagnoses is easily possible even without the computational limitations discussed in the

previous paragraph.

The diagnosis library is currently implemented independently from the configuration
reasoner, and further running time improvements could be reached by integrating it with the
core solver. In the current version JCONDIAG can only use the defined API of JConfigurator
which causes additional computational overhead.

7. Related work

While model-based diagnosis (MBD) techniques were originally developed for finding
explanations of unexpected behavior in physical devices such as, e.g., electronic circuits
[23], the applicability of the same framework for debugging software systemshas also been
shown for logic programs, declarative knowledge bases as well as—more recently—for
functional and imperative languages [5,13,29,31].

In [13], model-based diagnosis was applied to detect and locate faults in large VHDL
programs. VHDL is an imperative and widely used hardware description language for
the development of large hardware designs. In this approach, the diagnosis model is
automatically generated from VHDL code, where an appropriate high-level abstract
representation of the problem is chosen that is sufficiently detailed for reducing fault
localization costs compared with manual debugging but allows fast enough runtimes for
practical problem settings. Abstraction occurs by mapping to a dependency-based model
of the system, thus ignoring specific signal values. Diagnosis is performed by analyzing
discrepancies between the expected program behavior (given by its specification) and
the observed behavior given in terms of a waveform trace from simulation runs; the set
of diagnosable components is given by the concurrent statements in the VHDL code.
Compared with the approach presented in this paper, one key feature lies in the fact
that the diagnosis model can be automatically generated from the VHDL source code
and the constraints in the knowledge base, respectively, and model construction causes
no additional efforts. It is well known that one of the crucial factors when applying
MBD lies in finding the right model(see, e.g., [27]). The requirements for such models
include correctness, a guarantee that no diagnoses are excluded due to the abstractions,
and that ability to compute diagnoses within a reasonable time-frame for practical problem
settings. The insertion of error probabilities for components based on their complexity
for focusing on relevant diagnoses in [13] is a topic of further work for our approach of
diagnosing configurator knowledge bases. Finally, integration of the diagnosis system into
the knowledge engineer’s original development toolkit is a prerequisite for acceptance of
the additional debugging support made available by MBD technology.

Recent work extends the approach of debugging imperative languages with MBD tech-
niques from special-purpose languages to Java programs. In [28,31,32] the dependency-
based approach from [13] is extended to a value-based model of program execution which
allows for automatic detection of certain error types in Java programs. In contrast to tra-
ditional debugging techniques developed in the software engineering community, this ap-
proach requires no additional dependencies or annotations for analysis purposes. A value-
based approach allows the user to perform fine-grained diagnoses and (partial) identifi-



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 231

cation of repair actions, but the approach results in a higher complexity of the diagnosis

task; the authors therefore propose using a hybrid approach where a dependency-based
model is used for initial focusing before the value-based model is applied. In particular,
the techniques used for mutation diagnosis in [32] and their principal applicability for the
computation of repair actions (replacements) will be an interesting piece of future work
for our approach: Given the restricted nature of the constraints of configurator knowledge
bases, computation of a limited set of repair proposals seems to be feasible with respect to
the model complexity compared to general program statements.

In [5], a framework for model-based diagnosis of logic programs was developed using
expected and unexpected query results to identify incorrect clauses. When applying the
MBD approach, the user of a debugging tool is supposed to know the correct program
behavior and answer the questions posed by the debugger correctly. The diagnostic
reasoner can consequently use this knowledge in order to distinguish the different error
candidates and help the user in focusing his/her efforts. Their work was continued and
improved by Bond et al. [2,3] who embedded the diagnosis of logic programs and the
concept of Algorithmic Program Debugging [25] in a common underlying framework.
Although their general framework is similar to ours, it differs in using queries for logic
programs instead of automatic consistency checks as we do for configurations.

A way to diagnose faults in logic programs using a semantics based on SLDNF-
resolution was described in [22]. This work led to the development of the non-monotonic
reasoning system REVISE [6]. This system showed the applicability of extended logic
programming to solving model-based diagnosis problems. The basic logic programming
framework was extended with explicit negation and integrity constraints, revision of
assumptions is used to remove contradictions from the knowledge base. Explicit negation
was introduced to overcome the insufficient treatment of negation as finite failure in
Prolog-like systems. With well-defined semantics for the negation construct it was possible
to express the default assumption that the components work correctly. In principle, this
framework could be extended to achieve results similar to our approach, although one of
our main goals was to remain within first order predicate logic with standard semantics, so
that generic applicability to declarative configuration knowledge bases could be retained.

The idea to use declarative diagnosis instead of execution tracing was applied to
Constraint Logic Programs in [4]. In logic program diagnosis it is assumed that the user
is able to answer queries concerning whether or not an intermediate result corresponds
to the expectations, which may be a difficult task even for very simple programs. To
circumvent this the authors extended the diagnosis framework for logic programs by
introducing assertions which can be formulated by the user and are used to indirectly
answer the queries posed by the debugger. The approach gives no precise information
about the particular assertion language used; they could be expressed as additional
constraints or small constraint programs (which in turn may be faulty). In the case of
diagnosing configurator knowledge bases however, the definition of examples by listing
key components and determining whether it should be a negative or positive configuration
example is a comparatively simple task for the knowledge engineer.

In [1], model-based diagnosis was used for finding solutions to overconstrained
constraint satisfaction problems. The search process is controlled by explicitly assigning



232 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

weights to the constraints in the knowledge base that provide an external ordering on the

desirability of constraints, an assumption that is generally too strong for our domain.

A model-based scheme for repairing relational database consistency violations was
given in [15]. Integrity constraints, though expressed in relational calculus, effectively are
general clauses using the relations in the database as base predicates. The interpretation of
the constraints in diagnosis terms uses two fault models for each relation, abdel and abins,
expressing that a particular tuple must either be removed or inserted into the database to
satisfy the constraint. Individual violated constraints are used to directly derive conflict sets
for the diagnosis process. A particular diagnosis (i.e., a set of assumptions about database
tuples being in either the abdel or abins state) serves directly as a specification for the actions
that will bring the database into a state consistent with the violated constraints: tuples in
abdel need to be deleted, tuples in abins need to be inserted into the database. However,
the computation of diagnoses is local to the current set of violated constraints, i.e., a repair
executed according to a diagnosis found by examining the inconsistent constraints may
lead to alterations that violate other, previously satisfied, constraints. The authors present
some ideas for an iterative search process to deal with this problem. There is limited
correspondence with our work. Given that the goal of the approach is the alteration of the
database, the best correspondence is with what we consider requirements diagnosis (and
like our definition of CREQ-diagnosis, Gertz and Lipeck do not use negative examples).
The database diagnosis approach, however, involves an implicit closure assumption on
the database (reasoning about the abnormality of tuples not contained in the relations),
whereas it would make no sense to include completeness axioms concerning the set
SRS in all CREQ-diagnoses, since SRS would not be expected to completely enumerate
all needed components and connections. In addition, the repair actions on a tuple level
(which corresponds to adding components, connections, or attribute values to a system
requirement specification) have no corresponding application scenario in our domain.

In recent years, alternative algorithms to Reiter’s hitting set algorithm for the
computation of diagnoses have been developed. In [8] and [30], structural properties of the
system to be diagnosed are exploited to speed up the reasoning process. These approaches
apply to tree-structured systems where the input and output behavior of diagnosable
components can be described in terms of functions. Diagnoses can be computed efficiently
by propagating input values and observations forward and backward [30] in the system.
The direct applicability of this approach to diagnosis of configuration knowledge bases
seems to be limited, given the cyclic structure of dependencies in the knowledge base.
However, analysis of the potential to exploit knowledge about the underlying constraint
network (consisting of n-ary constraints) will be a part of our future work. In particular
it seems to be very promising to explore rewriting techniques to transform configuration
knowledge bases into tree-structured systems.

An approach extending the results from the DRUM-II system is described in [14],
where diagnosis is based on general purpose automated theorem proving techniques. In the
presented work, the underlying logical models are used directly for diagnosis in an iterative
repair approach. However, this approach relies on specialized proof procedures, whereas
in our work the goal was to diagnose systems that are built with domain-independent
commercial constraint solving software which is optimized for efficient solution search.



A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234 233

8. Conclusion
With the growing relevance and complexity of AI-based applications in the configura-
tion area, the usefulness of other knowledge-based techniques for supporting the develop-
ment of these systems is likewise growing. In particular, due to its conceptual similarity to
configuration, model-based diagnosis is a highly suitable technique to aid in the debugging
of configurators. We have developed a framework for localizing faults in configuration
knowledge bases, based on a precise definition of configuration problems. This defini-
tion enables us to clearly identify the causes (diagnoses) that explain a misbehavior of the
configurator. Positive and negative examples, commonly used in testing configurators, are
exploited to identify possible sets of faulty clauses in the knowledge base. Building on
the analogy between the formal models of configuration and diagnosis, we have given an
algorithm for computing diagnoses in the consistency-based diagnosis framework and pro-
vided experimental data for our implementation of the algorithm that show the suitability of
integrating the diagnosis approach in commercial configurator development environments.

We have also examined how our method can be used for a different task in the same
context: identifying conflicting customer or user requirements that prevent the construction
of valid configurations, support the user during configuration sessions. The clear separation
between knowledge base and inference engine enables us to deal with knowledge bases in
terms of their declarative semantics, and at the same time facilitates their translation to
(or incorporation into) the type of model desired for diagnosis purposes. Since the model
remains independent of a particular implementation of the inference process, the net result
is that the model-based approach scores both in terms of robustness as well as in terms of
generality and ease of application.

References

[1] R.R. Bakker, F. Dikker, F. Tempelman, P.M. Wognum, Diagnosing and solving over-determined constraint
satisfaction problems, in: Proc. IJCAI-93, Chambéry, France, Morgan Kaufmann, San Mateo, CA, 1993,
pp. 276–281.

[2] G.W. Bond, Top-down consistency based diagnosis, in: Proc. DX-96 Workshop on Principles of Diagnosis,
Val Morin, Canada, 1996.

[3] G.W. Bond, B. Pagurek, A critical analysis of “Model Based Diagnoses meets Error Diagnosis in Logical
Programs”, Technical Report SCE-94-15, Carleton University, Department of Systems and Computer
Engineering, Ottawa, ON, 1994.

[4] J. Boye, W. Drabent, J. Maluszynski, Declarative diagnosis of constraint programs: An assertion-based
approach, in: Proc. AADEBUG-1997, 1997, pp. 123–140.

[5] L. Console, G.E. Friedrich, D.T. Dupré, Model-based diagnosis meets error diagnosis in logic programs, in:
Proc. IJCAI-93, Chambéry, France, Morgan Kaufmann, San Mateo, CA, 1993, pp. 1494–1499.

[6] C.V. Damásio, L.M. Pereira, M. Schroeder, REVISE: Logic programming and diagnosis, in: Proc. Fourth
Conference on Logic Programming and Non-monotonic Reasoning (LPNMR-97), Springer, Berlin, 1997,
pp. 354–363.

[7] N. de Siqueira, J.-F. Puget, Explanation-based generalization of failures, in: Proc. ECAI-88, Munich,
Germany, Pitman, London, 1998, pp. 339–344.

[8] Y. El Fattah, R. Dechter, Diagnosing tree-decomposable circuits, in: Proc. IJCAI-95, Montreal, Quebec,
1995, pp. 1742–1748.

[9] A. Felfernig, G. Friedrich, D. Jannach, UML as domain specific language for the construction of knowledge-
based configuration systems, Internat. J. Software Engrg. Knowledge Engrg. 10 (4) (2000) 449–469.



234 A. Felfernig et al. / Artificial Intelligence 152 (2004) 213–234

[10] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, Hierarchical diagnosis of large configurator

knowledge bases, in: Proc. 24th German/9th Austrian Conference on Artificial Intelligence (KI-2001),
Vienna, Austria, in: Lecture Notes in Artificial Intelligence, Vol. 2174, Springer, Berlin, 2001, pp. 185–197.

[11] A. Felfernig, G. Friedrich, D. Jannach, M. Zanker, Web-based configuration of virtual private networks
with multiple suppliers, in: J. Gero (Ed.), Proc. 7th Internat. Conference on Artificial Intelligence in Design
(AID-02), Cambridge, UK, Kluwer, Dordrecht, 2002, pp. 41–62.

[12] G. Fleischanderl, G.E. Friedrich, A. Haselboeck, H. Schreiner, M. Stumptner, Configuring large systems
using generative constraint satisfaction, IEEE Intelligent Systems 13 (4) (1998) 59–68.

[13] G.E. Friedrich, M. Stumptner, F. Wotawa, Model-based diagnosis of hardware designs, Artificial
Intelligence 111 (2) (1999) 3–39.

[14] P. Fröhlich, W. Nejdl, A static model-based engine for model-based reasoning, in: Proc. IJCAI-97, Nagoya,
Japan, 1997.

[15] M. Gertz, U.W. Lipeck, A diagnostic approach to repairing constraint violations in databases, in: Proc. DX-
95 Workshop on Principles of Diagnosis, Goslar, 1995.

[16] R. Greiner, B.A. Smith, R.W. Wilkerson, A correction to the algorithm in Reiter’s theory of diagnosis,
Artificial Intelligence 41 (1) (1989) 79–88.

[17] U. Junker, Preference programming for configuration, in: Proc. IJCAI-01 Workshop on Configuration,
Seattle, WA, 2001, pp. 50–57.

[18] U. Junker, QUICKXPLAIN: Conflict detection for arbitrary constraint propagation algorithms, in: Proc.
IJCAI-01, Workshop on Modelling and Solving Problems with Constraints, Seattle, WA, 2001.

[19] D. Mailharro, A classification and constraint-based framework for configuration, Artificial Intel. Engrg.
Design Anal. Manufact. 12 (4) (1998).

[20] D.L. McGuinness, J.R. Wright, Conceptual modelling for configuration: A description logic-based approach,
Artificial Intelligence for Engrg. Design Anal. Manufact. 12 (4) (1998).

[21] S. Mittal, F. Frayman, Towards a generic model of configuration tasks, in: Proc. IJCAI-89, Detroit, MI, 1989,
pp. 1395–1401.

[22] L.M. Pereira, C.V. Damásio, J.J. Alferes, Debugging by diagnosing assumptions, in: Proc. AADEBUG-93,
Linköping, Sweden, 1993.

[23] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1) (1987) 57–95.
[24] J.T. Runkel, A. Balkany, W.P. Birmingham, Generating non-brittle configuration-design tools, in: Proc.

Artificial Intelligence in Design 94, Lausanne, Kluwer Academic, Dordrecht, 1994, pp. 183–200.
[25] E. Shapiro, Algorithmic Program Debugging, MIT Press, Cambridge, MA, 1983.
[26] T. Soininen, J. Tiihonen, T. Männistö, R. Sulonen, Towards a general ontology of configuration, AI

Engineering Design Analysis and Manufacturing 12 (4) (1998) 357–372.
[27] P. Struss, What’s in SD? Towards a theory of modeling for diagnosis, in: W. Harmscher, L. Console,

J. de Kleer (Eds.), Readings in Model-Based Diagnosis, Morgan Kaufmann, San Mateo, CA, 1992.
[28] M. Stumptner, F. Wotawa, VHDLDIAG+: Value-level diagnosis of VHDL programs, in: Proc. DX-98

Workshop on Principles of Diagnosis, Cape Cod, 1998.
[29] M. Stumptner, F. Wotawa, Debugging functional programs, in: Proc. IJCAI-99, Stockholm, Sweden, Morgan

Kaufmann, San Mateo, CA, 1999, pp. 1074–1079.
[30] M. Stumptner, F. Wotawa, Diagnosing tree-structured systems, Artificial Intelligence 127 (1) (2001) 1–29.
[31] C. Mateis, M. Stumptner, F. Wotawa, Modeling Java programs for diagnosis, in: Proc. 14th European

Conference on Artificial Intelligence, Berlin, Germany, IOS Press, 2000, pp. 171–175.
[32] F. Wotawa, On the relationship between model-based debugging and program slicing, Artificial Intelli-

gence 135 (1–2) (2002) 125–143.


