
CHAPTER 7

Rapid Knowledge Base Development for
Product Configuration Systems using the

Unified Modeling Language
Alexander Felfernig

Gerhard Friedrich

Dietmar Jannach

Markus Zanker

Institut für Wirtschaftsinformatik und Anwendungssysteme,

Universität Klagenfurt

ABSTRACT

Knowledge-based product configuration systems play an important role in modern
business strategies. These systems support the sales representative or the technical
engineer to cope with the complexity of configurable products, the huge number of
available variants, and different restrictions on allowed product constellations.
Nowadays, typical knowledge-based configuration systems are not well integrated into
standard software development processes but use proprietary knowledge representation
formalisms which are not understandable for domain experts. In this chapter we show
how the Unified Modeling Language (UML) can be applied as domain-oriented notation
for the design of configuration knowledge bases. The provided modeling concepts can be
used for comprehensible knowledge acquisition and are given precise semantics, such
that an automatic translation to executable configuration knowledge bases is feasible.
Following a discussion on these modeling concepts we show how their expressiveness
can be enhanced by using the Object Constraint Language (OCL) and how the
construction of complex configuration models can be supported.

7.1 INTRODUCTION

In today’s rapidly changing, globalizing markets traditional mass production paradigms
appear anachronistic. Mass production is increasingly replaced by customer-individual
production of highly variant products. Companies are forced to diversify their product
spectrum in order to be able to fulfill the individual needs of customers. The additional

2 Domain Oriented Systems Development

costs for offering customer-individual products must be minimized in order to be able to
provide customizable products in a competitive fashion. “Mass-customization”3)

appeared as a new paradigm representing the trend towards the production of highly
variant products under mass production speed and pricing conditions. This paradigm
imposes increasing demands on the development and maintenance of software
supporting sales and production of highly variant products. This software must be able to
handle rapidly changing, complex constraints on the products and on the corresponding
processes supporting quotation, order processing, production, delivery, and maintenance.
In particular knowledge-based configuration systems (configurators) are increasingly
applied for supporting processes related to highly variant products.
 There exists a variety of application domains for product configuration systems.
One well known application domain is the telecommunication industry, where
telecommunication systems support switching functionality for enterprise-wide telephone
services. Furthermore, these systems also provide additional services like voice-over-ip,
messaging services, ISDN connections, video-telephony, or video-conferencing. In this
context configurators are used for calculating bill-of-materials representing the
configuration of a switching system. The configuration of audiovisual equipment,
automobiles, computer systems, trucks, airplanes, modular furniture (kitchens etc.),
industrial products (e.g. valves, actuators, or controls), or light control systems are
further application areas for knowledge-based configuration.
 Effective application of configuration technology implies a number of
improvements. The configuration system automatically checks the requirements imposed
by the customer with regard to given marketing constraints, technical constraints, and
constraints concerning the production process, which reduces the response time to given
customer requests. Automated configuration avoids errors in the quotation and order
processing phase. Consequently, time consuming reconfigurations of non-realizable
orders are avoided and the time between equipment sales and delivery/installation of the
product is decreased.
 Configuration systems can significantly contribute to the improvement of processes
related to highly variant products and are of strategic importance for enterprises.
However, the development and maintenance of these systems is facing a set of
challenges, which must be tackled in order to allow an effective application of
configuration technology. First, the complexity of the task requires the sophisticated
knowledge of experts. This knowledge must be effectively acquired and translated into a
corresponding configuration knowledge base. Second, configurator development time is
short and strictly limited since the development of the product and the product
configuration system have to be done in parallel. Finally, the configuration knowledge
base has to be adapted continuously because of changing sets of available components
and configuration constraints.
 In the following we show, how the knowledge acquisition task for configuration
knowledge bases can be effectively supported by applying the Unified Modeling
Language (UML36)) as domain-specific representation language for building
configuration knowledge bases. We employ UML, since this language is widely applied
in industrial software development as a standard design language supporting the software
development process starting with the requirement analysis phase proceeding until the
implementation phase. UML has a built-in constraint language which supports a formal
definition of constraints on models that are designed using the graphical concepts of
UML class diagrams. UML is extensible for domain-specific purposes, i.e. the semantics
of the basic modeling concepts of the language can be further refined in order to be able
to provide domain-specific modeling concepts, which allow a more intuitive construction

Rapid Knowledge Base Development for Product Configuration Systems 3

of the corresponding models. Finally, we have made excellent experiences in using UML
designs for validation by technical experts.

7.2 CONFIGURATION TASK

In order to avoid time-consuming development of specific designs for each customer,
customizable products are designed following a building block principle where basic
parts can be configured into different sorts of assemblies. A configuration task can be
characterized through a set of available component types, a description of their
properties, namely attributes and possible attribute values, connection points (also called
ports), and constraints on legal combinations of those constitutive elements. Given some
customer requirements, the result of computing a configuration is a set of components,
corresponding attribute valuations, and connections satisfying all constraints and
customer requirements.
 In Felfernig et al.20) an application-independent first-order logic-based definition of
a configuration task is given. In this work a configuration problem is defined as a logic
theory based on two sets of logical sentences.

1. Domain description (DD). Configurations are composed from components
corresponding to component definitions in a component catalog – these definitions are
described by a set of types. Attributes of component types are described by the function
attributes, the domains of those attributes are described by the function dom. Finally,
ports of component types are described by the function ports. The domain of these
functions are sets of constants describing the corresponding attributes, attribute domains,
and ports. These sets including a set of constraints on legal combinations of components,
connections, and value instantiations are assumed to be contained in the set DD.

2. System Requirements Specification (SRS). Most configuration problems incorporate
some kind of additional requirements (e.g. customer requirements) which describe
additional constraints respectively initial components which must be part of the
configuration. These constraints are contained in SRS.
 In Felfernig et al.20) a configuration problem is defined as follows.

Definition (Configuration Problem). In general a configuration problem is described
by a triple (DD,SRS,CONL), where DD and SRS are sets of logical sentences and CONL
is a set of predicate symbols. DD represents the domain description, and SRS specifies
the particular system requirements which define an individual configuration problem
instance. A configuration CONF is described by a set of positive ground literals whose
predicate symbols are in the set of CONL.
 Note that - depending on the configuration domain – the set of predicates in CONL
is extensible if needed. For example, a predicate could be defined specifying that a
certain port of a component must be left unconnected. A consistent configuration is
defined as follows in Felfernig et al.20).

Definition (Consistent Configuration). Given a configuration problem
(DD,SRS,CONL), a configuration CONF is consistent iff DD ∪ SRS ∪ CONF is
satisfiable.
 The intuitive definition of a consistent configuration allows determining the
validity of partial configurations, but does not require completeness of the configuration
(e.g. a partial configuration only containing a floppy disk is a consistent configuration). It

4 Domain Oriented Systems Development

is necessary, that a configuration explicitly includes all needed components as well as
their connections and attributes. Therefore we need to introduce an explicit formula for
each predicate symbol in CONL (completeness axioms) to guarantee this completeness
property. In order to stay within first-order logic, this property is modeled by first order
formulae. A set of completeness axioms20) assures the completeness of CONF. Such a
complete configuration is denoted as CCONF.

Definition (Valid and Irreducible Configuration). Let (DD, SRS, CONL) be a
configuration problem. A configuration CONF is valid iff DD ∪ SRS ∪ CCONF is
satisfiable. CONF is irreducible if there exists no other valid configuration CONFsub
such that CONFsub ⊂ CONF.
 As mentioned in Friedrich,Stumptner23) the above definitions represent a high-level
view of the language developed and used in the COCOS configuration project24), which
used as representation formalism a generative constraint satisfaction scheme that can be
defined by a direct mapping from the consistency-based semantics sketched in this
section.

7.3 BUILDING CONFIGURATION KNOWLEDGE BASES IN UML

The unavailability of methods for handling the increasing size and complexity of
software systems triggered the “software crisis” in traditional software development.
Similarly, knowledge-based systems development experienced increasing challenges
triggered by the size and complexity of the knowledge bases. R1/XCON5) can be seen as
an representative example for the complexity of knowledge base maintenance. In 1989
the knowledge base had about 31.000 components and about 17.500 rules (engineering,
manufacturing, and marketing rules) with a changing rate about 40% (rule additions,
deletions, and modifications) per year.
 In order to tackle these challenges, a number of methods and tools supporting the
expert system development process were proposed (e.g. Schreiber et al.42)). Using these
approaches, the development of knowledge-based systems was supported and improved
by the provision of diagrammatic notations and formal description languages. Similar
approaches were also developed in Software Engineering research in order to effectively
handle the implementation of software systems and to support a structured development
process for these systems. These approaches have progressed from functional
decomposition and data-driven techniques and methods (e.g. Cameron9)) to object-
oriented analysis and design techniques and methods such as Rumbaugh et al.33), Booch
et al.7). Moving from data-driven and functional approaches, research focused on the
development of object-oriented analysis and design approaches, which are nowadays
also accepted in industrial software development processes. These approaches reduce the
“semantic gap” between the considered universe of discourse and the abstract model and
increase the understandability and maintainability of the resulting models (Jacobson et
al.27)).
 The Unified Modeling Language (UML36)) is the result of an integration of the
object-oriented approaches of Booch et al.7), Jacobson et al.27), and Rumbaugh et al.33),
which is well established in industrial software development processes. UML is
applicable throughout the whole software development process from the requirements
analysis phase to the implementation phase providing different notations. One of the
major advantages of UML is the principle of extensibility of the basic meta-model.
Following this principle the basic modeling concepts defined in the UML meta-model
can be further extended in order to support the definition of domain-specific modeling

Rapid Knowledge Base Development for Product Configuration Systems 5

concepts for specific application areas. The set of domain-specific modeling concepts
including constraints on their syntactical usage are defined in an UML profile1.
 State-of-the-art approaches for developing software systems provide methods and
techniques which support an effective construction of those systems. However, the
transformation of informal requirements into an implemented system is still a challenge
for the development of knowledge-based systems as well as for traditional software
development. In the following we show how to integrate the development of
configuration systems into the standard software development process by using UML as
a knowledge acquisition front-end which allows the automatic generation of executable
configuration knowledge bases.

7.3.1 Example: UML Configuration Model

For the following discussions the simple UML configuration model shown in Figure
will serve as working example.
 This model represents the generic product structure, i.e. all possible variants of a
configurable car. The basic structure of the product is modeled using classes,
generalization, and aggregation. The set of possible products is restricted through a set of
constraints which are related to technical restrictions, economic factors, and restrictions
according to the production process. The used modeling concepts can be seen as an
ontology in the sense of Chandrasekaran et al.10), i.e. ontologies are theories about the
sorts of objects, properties of objects, and relations between objects that are possible in a
specified domain of knowledge. This ontology represents an integration of different basic
configuration paradigms (Soininen et al.40)). Component types (represented through the
stereotype “ComponentType”) represent the constituent parts of a configuration model;
car, engine, or gearing are examples for such component types (see Figure 7.1).
Component types are organized in a part-of hierarchy, where aggregations between
component types can be either composite or shared aggregations in the sense of the UML
semantics32).
 Furthermore, resources and functions are further basic concepts which are
represented as stereotyped classes in a UML configuration model2. Parts of a
configuration problem can be seen as a resource balancing task, where some of the
component types produce some resources and others are the consumers. In many cases
some parts of the configuration model contain information which are relevant for the
customer, e.g. not every screw of a car must be presented to the customer. Functions are
used to represent exactly those parts of the configuration model. Similar to component
types, functions can be organized using partonomies and taxonomies.
 Beside the structural information, a configuration model also contains a set of
constraints on the correct usage of the components and functions within a configuration.
Such constraints can also be expressed graphically.
 In Figure 7.1 the existence of an automatic gearing requires the existence of an otto
engine within the final configuration. Furthermore, a 4-wheel gearing must not be used
in combination with a diesel engine within the final configuration. These constraints can
be used to express basic restrictions on the configuration model, but must not be seen as
sufficient for expressing all kinds of constraints on a configuration model. In order to

1 For building product models in UML we have defined an UML configuration profile.
2 These concepts are not used in the example model.

6 Domain Oriented Systems Development

express constraints on configuration models which cannot be expressed graphically, we
employ the Object Constraint Language (OCL)3.

Figure 7.1 A simple UML Configuration Model

7.3.2 Introducing Domain-specific Modeling Concepts in UML

In order to introduce a modeling concept into the configuration profile, the following
steps are necessary.

1. Define the new concept (a new stereotype or tagged value4) and state the well-

formedness rules for its correct usage within the model. Well-formedness rules are
expressed as OCL constraints on the UML metamodel. In order to restrict the usage
of the stereotyped dependency “requires” (see the requires relation between the
automatic gearing and the otto engine in Figure 7.1) to the connection of two
component types, the following constraint can be formulated.

context dependency inv:
self.stereotype.name=”requires” implies
self.client.stereotype.name=”ComponentType” and
self.supplier.stereotype.name=”ComponentType”.

3 The application of OCL will be discussed in Section 7.4.
4 Stereotypes and tagged values are basic mechanisms provided by UML for defining restrictions on the UML
meta-model.

automatic
<<ComponentType>>

2-wheel
<<ComponentType>>

1,9 16V
<<ComponentType>>

1,4 16V
<<ComponentType>>

otto
<<ComponentType>>

gearing
<<ComponentType>>

engine
<<ComponentType>>

accessoires
<<ComponentType>>

lights
color : "yellow", "white"

<<ComponentType>>

car
painting : "red", "green", "black"
type : "baseline", "city", "sport"
equipment : "standard", "luxury"
fuel : "petrol", "diesel"

<<ComponentType>>

1..11..1 1..11..11..51..5 1..11..1

<<requires>>

diesel
<<ComponentType>>

4-wheel
<<ComponentType>>

<<incompatible>>

Rapid Knowledge Base Development for Product Configuration Systems 7

2. Define the semantics of the concept for the configuration domain by stating the
facts and constraints induced to the logic theory when using the concept. These
translation rules are discussed in detail in Felfernig et al.18),19).

 In order to state additional constraints on the product model which cannot be
expressed graphically, the Object Constraint Language (OCL) can be employed. In
Section 7.4 we sketch, how OCL can be used to define additional constraints on
configuration models.

7.3.3 Derivation of Configuration Knowledge Bases

In order to support the automatic construction of a configuration knowledge base from
the conceptual UML model, a clear definition of the semantics of the employed modeling
concepts has to be provided (see Felfernig et al.18),19)). This is achieved by defining
translation rules from the conceptual configuration model to a logical theory20). Such a
theory includes the description of a part library and constraints on those parts. The result
of the translation is a set of first-order logical sentences that form a domain description
which can be used by a configuration system which is based on the component-port
representation (Mittal,Frayman29) and Friedrich,Stumptner23)).
 In the following we do not discuss the translation rules in detail, but give a couple
of examples for the result of applying the translation rules. A discussion of the rules for
translating UML class diagrams and OCL constraints into configuration knowledge bases
can be found in Felfernig et. al18),19).
 The configuration knowledge base which corresponds to the UML configuration
model of Figure 7.1 is the following.

types={car, accessoires, gearing, engine, lights, 2-wheel, automatic, 4-wheel, otto,
 1-4-16V, 1-9-16V, diesel}.
attributes(car)={painting, type, equipment, fuel}.
attributes(lights)={color}.
dom(car, painting)={red, green, black}.
dom(car, type)={baseline, city, sport}.
dom(car, equipment)={standard, luxury}.
dom(car, fuel)={petrol, diesel}.
dom(lights, color)={yellow, white}.
ports(car)={accessoires1,...,accessoires5, gearing, engine, lights}.
ports(accessoires)={car}.
ports(gearing)={car}.
ports(engine)={car}.
ports(lights)={car}.

 The component types of Figure 7.1 are translated into a set of types with
corresponding attributes and attribute domains (dom). Furthermore, the partof
relationships are translated into port constants which are used to express connections
between components in a configuration.
 The constraints defined on the configuration model of Figure 7.1 are translated into
the logic representation of a configuration problem as follows. It is assumed, that
CONL={type/2, conn/4, val/3}, where type(ID, a) indicates that ID is of type a,
conn(ID1, p1, ID2, p2) indicates that component ID1 is connected via port p1 with ID2

8 Domain Oriented Systems Development

and ID2 is connected with ID1 via port p2. Furthermore, val(ID, a, c) indicates that the
attribute a of ID has the value c.

An “automatic” gearing requires the existence of an “otto” engine:
type(ID1, automatic) ∧ type(ID2, car) ∧ conn(ID1, car, ID2, gearing) ⇒ ∃ ID3
type(ID3, otto) ∧ conn(ID3, car, ID2, engine).

A “4-wheel” gearing is incompatible with a ”diesel” engine:
type(ID1, 4-wheel) ∧ type(ID2, car) ∧ type(ID3, diesel) ∧ conn(ID1, car, ID2,
gearing) ∧ conn(ID3, car, ID2, engine) ⇒ false.

 The form of logical sentences is restricted to a subset of range-restricted5 first-
order-logic with set-extension, the variables6 are all-quantified if not explicitly
mentioned. In order to assure decidability, the term-depth is restricted to a fixed number.
For implementation purposes the logical sentences can be regarded as instantiation
schemes23) for the translation into other representation formalisms, such as a Generative
Constraint Satisfaction Problem (GCSP38)) representation.
 A configuration result consists of a set of positive ground literals whose predicate
symbols are in CONL. Assuming that CONL={type/2, conn/4, val/3}, the following set
of ground literals could represent a configuration result CONF.

CONF={type(id1, car). type(id2, accessoires), type(id3, automatic). type(id4,
1_4_16V). type(id5, lights). val(id1, painting, red). val(id1, type, city). val(id1,
equipment, standard). val(id1, fuel, petrol). val(id5, color, white). conn(id1,
accessoires, id2, car). conn(id1, gearing, id3, car). conn(id1, engine, id4, car).
conn(id1, lights, id5, car)}.

7.4 EXTENDING CONFIGURATION MODELS USING OCL

The Object Constraint Language (OCL45)) is an expression language based on first-order
logic which enables the definition of constraints on object-oriented models. OCL was
strongly influenced by the development of Syntropy11), an object-oriented modeling
language which combined the diagrammatic representation concepts of OMT33) with the
formality of Z14). OCL complements the graphical (semiformal) notation of UML by
providing a precise vocabulary for expressing constraints on graphical models. Since
UML is a wide-spread modeling language in industry, OCL itself establishes an
increasingly important role in the field of formal specification languages. However, the
definition of the OCL semantics is based on a proposed syntax (represented as context-
free grammar) and additional textual descriptions and examples. Although this is a quite
intuitive approach for demonstration purposes, a corresponding formal definition is
needed. In order to provide a semantics for OCL constraints in product configuration, we
propose a set of translation rules that transform those constraints into the logic
representation discussed in the previous sections7.
 A constraint imposed to the configuration model of Figure 7.1 could state that a red
car requires yellow lights. This constraint can be formulated as follows in OCL.

5 Every variable of the consequence part of the clause is also contained in the antecedent part.
6 Variables are starting with an upper case letter.
7 A discussion of the translation rules can be found in Felfernig et al.19).

Rapid Knowledge Base Development for Product Configuration Systems 9

context car inv:
car.painting=”red” implies car.lights.color=”yellow”

 This constraint is built from the following parts:

• Context: A context describes for which class the constraint has to hold. In the
above example the constraint has to hold for all car instances.

• Navigation expression: The navigation expression car.lights results in the lights
component connected with the car instance. The name “lights” is the default
name of the association from the class car to the class lights since no association
name is specified here32).

• Attribute access: access to attributes of objects. In the above example, the
attributes painting and color are accessed.

• Operator “=”: In the above example this operator is used for comparing the
attribute values of painting and color with corresponding constants (“red”,
“yellow”).

 Such an OCL constraint can be translated into a closed logical formula following
an implication schema, where the right hand side (RHS) contains the all-quantified
variables which correspond to the result of the evaluations of navigation expressions and
the corresponding operations. The left hand side (LHS) contains the corresponding
logical consequence, i.e. the evaluation results of the right hand side connected with the
logical and relational operators.
 The example OCL constraint on the car configuration model is translated as follows
into the logic representation of a configuration problem.

type(ID1, car) ∧ ResultSet1={ID1} ∧ connected_set_a(ResultSet1, painting,
ResultSet2) ∧ connected_set(ResultSet1, lights, ResultSet3) ∧
connected_set_a(ResultSet3, color, ResultSet4) ∧ Val1∈ ResultSet2 ∧ Val2 ∈
ResultSet4 ⇒ (Val1=red ⇒ Val2=yellow).

 The predicates connected_set and connected_set_a are used to express a component
navigation respectively an attribute access in a given OCL navigation expression, e.g.
connected_set(ResultSet1, lights, ResultSet3) expresses the navigation from a car
instance to the connected light instance, connected_set_a(ResultSet1, painting,
ResultSet2) expresses an access to the attribute painting of the class car.

7.5 STRUCTURING CONFIGURATION KNOWLEDGE BASES

The application of UML for building configuration models is motivated by the wide-
spread use of the language, the high degree of understandability, the extendibility for
domain-specific purposes, and the availability of a built-in constraint language which
allows the definition of complex constraints. However, when modeling highly variant
products, that offer the customer a vast amount of interdependent options, expressiveness
restrictions of a single (partitioned) diagram are approached. The diagrammatic depiction
becomes harder to maintain and understand as the number of elements and constraints
depicted in the diagram increases. In order to improve the understandability and
maintainability of UML configuration models, we introduce the notion of contextual
diagrams (see Felfernig et al.17),21)), which provide a means for structuring constraints in
a configuration model.

10 Domain Oriented Systems Development

7.5.1 UML Packages

Before introducing contextual diagrams, let us have a look at the basic structuring
mechanisms provided in UML. A package is simply defined in UML as a grouping of
model elements. Packages themselves may be nested within other packages. It is
therefore straightforward to partition a diagram into packages under the premise of high
cohesion among the elements in the same package and low coupling between different
packages.
 The strictly defined hierarchical package structure can not only be used to partition
the model knowledge, but as well to structure the solving process of the underlying
configuration system. In some cases parts of a configuration problem can be solved more
or less independently. This property can be used to structure the solving process, which
leads to smaller problem sizes and less computational complexity in the solving process.
The partitioning of configuration problems for allowing efficient calculations of
solutions for large configuration problems is discussed in Fleischanderl,Haselböck25).
The configuration of switching systems is one of the most complex application areas for
knowledge-based configuration. As mentioned in Fleischanderl et al.24), configurations
representing switching systems can become large and complex. Fleischanderl et al.24)
describe an example system with about 43.000 components, 215.000 attributes and
120.000 ports. In order to allow an efficient calculation of solutions, the problem domain
must be separated into different independent sub-problems – exactly this property was
exploited in Fleischanderl,Haselböck25).

7.5.2 Additional Structuring Mechanisms

Parts of the configuration knowledge sometimes apply only in a specific context. For
example, depending on the country, different keyboards must be added to a personal
computer configuration, furthermore the language of the operating system must be
adequately configured. Consequently, the country is a parameter of the configuration
model, which determines a set of additionally relevant constraints. If the customer wants
to have a certain type of car (e.g. a car of type baseline), this selection can also impose
further constraints which only apply in the case that this specific type is selected. Figure
7.2 shows the result of adding a set of additional constraints to the configuration model
shown in Figure 7.1.
 Such constraints can concern different classes sometimes stored in different
packages of the configuration model. In real world settings, where the number of
constraints and component types is large, the maintenance of models following the
strategy shown in Figure 7.2 obviously leads to maintenance problems and is a challenge
for the knowledge engineer as well as for the technical expert. For example, if constraints
concerning the type of a car must be changed, these constraints are spread all over the
configuration model assigned to classes stored in different packages. A closer look at the
constraints shows that the constraints can be categorized into groups having the same
preconditions. Exactly this property can be used for partitioning the whole model into
different views, where each view contains only a restricted set of constraints. We denote
such kind of views as contextual diagrams. Constraints concerning a specific context are
organized in a central location (contextual diagram), which significantly alleviates the
handling of changes. In the example given, constraints concerning the car type baseline
can be organized in one single contextual diagram.

Rapid Knowledge Base Development for Product Configuration Systems 11

Figure 7.2 Configuration Model with additional constraints

7.5.3 Contextual Diagrams

The notion of context has been discussed in different research areas15), 28), 39), 13), 43), 4)
using quite different interpretations. Overviews of different interpretations of the notion
of context can be found in Charlton,Wallace13), Akman,Surav4). Informally, a context can
be interpreted as a general condition under which an event, action, etc. takes place. The
interpretation of the notion of context used in the following is similar to the notion
defined in McCarthy28) who proposes a formalism ist(c,p) in order to define a context c,
in which the proposition p must hold, i.e. p is true in c. On the graphical level contexts
are represented as contextual diagrams. Using contextual diagrams, the graphical
representation (GREP) of a configuration knowledge base is organized in a context
hierarchy (see Figure 7.3). An important relation defined on contexts is “p” (see
McCarthy28)). Such an relation c1 p c2 defines a partial ordering over contexts meaning
that the context c2 contains all the information of the context c1 and probably more.
Except GREProot, each contextual diagram GREPi has an assigned precondition GREPPi,
which represents the conditions, under which the constraints defined in GREPi apply.
This precondition can be interpreted as a set of circumstances surrounding the actual
configuration process, in which an additional set of constraints must hold. The root
model GREProot contains basic structural elements of the configuration model including
basic constraints on this model. Contextual diagrams GREPi can be constructed by
imposing further constraints on a copy of an already existing contextual diagram. The
result of this construction process is a hierarchy of contextual diagrams (see Figure 7.3),
in which each contextual diagram GREPi either represents the root of the hierarchy
(GREProot), or is derived from another contextual diagram. Note that all the preconditions

automatic
<<ComponentType>>

2-wheel
<<ComponentType>>

1,9 16V
<<ComponentType>>

1,4 16V
<<ComponentType>>

otto
<<ComponentType>>

diesel
<<ComponentType>>

4-wheel
<<ComponentType>> <<incompatible>>

engine
<<ComponentType>>

lights
color : "yellow", "white"

<<ComponentType>>

accessoires
<<ComponentType>>

car
painting : "red", "green", "black"
type : "baseline", "city", "sport"
equipment : "standard", "luxury"
fuel : "petrol", "diesel"

<<ComponentType>>

1..51..5

gearing
<<ComponentType>>

C1:type="baseline" implies
(gearing.oclIsTypeOf(automatic) implies
 engine->select(oclIsTypeOf(1_4_16V)->size>0))

C2: type="city" implies
 (engine.oclIsTypeOf(1_4_16V))

C3: type="sport" implies
 (gearing.oclIsTypeOf(4-wheel))

C4: type="baseline" implies
 (fuel="petrol")

12 Domain Oriented Systems Development

of contextual diagrams starting from GREProot along the path to GREPi are included in
GREPPi. For example, the precondition GREPP3 of contextual diagram GREP3 in Figure
7.3 is c including the precondition of GREP1, namely a, i.e. a ∧ c.

Figure 7.3 A simple Context Hierarchy

 We define a context as follows:

Definition (Context). A context ci is represented by a set of logical sentences DDi ⊂
DD, where DD represents the domain description. DDi contains those logical sentences,
which solely apply in ci and are derived from a corresponding contextual diagram GREPi
.
 Figure 7.4 contains the constraints concerning a car of type baseline, which are
now included in a separate contextual diagram. GREPPbaseline in this diagram is simply
the expression type=”baseline”, which can be formulated as OCL constraint. Note that
the knowledge engineer or the domain expert are not forced to enter this precondition
textually as OCL constraint, but rather define those restrictions directly in the diagram
itself, e.g. by reducing the domain of the corresponding attributes8. Constraints, which
apply in the actual context can also be entered in a similar way.

8 More complex conditions must be formulated as OCL expressions.

GREProot

GREP1 GREP2

GREPP1=a GREPP2=b

GREP3 GREP4

GREPP3= a c GREPP4=a d

automatic
<<ComponentType>>

2-wheel
<<ComponentType>>

diesel
<<ComponentType>>

4-wheel
<<ComponentType>>

1,9 16V
<<ComponentType>>

1,4 16V
<<ComponentType>>

otto
<<ComponentType>>

gearing
<<ComponentType>>

engine
<<ComponentType>>

accessoires
<<ComponentType>>

lights
color : yellow, white

<<ComponentType>>

car
color : red, green, black
type : baseline, city, sport
equipment : standard, luxury
fuel : petrol, diesel

<<RootComponentType>>

1..11..1 1..11..11..51..5 1..11..1

<<requires>>

automatic
<<ComponentType>>

2-wheel
<<ComponentTy pe>>

1,9 16V
<<ComponentTy pe>>

1,4 16V
<<ComponentTy pe>>

otto
<<ComponentType>>

gearing
<<ComponentType>>

engine
<<ComponentType>>

accessoires
<<ComponentType>>

li ghts
color : y ell ow, white

<<ComponentType>>

car
color : red, green, blac k
type : baseline, city, sport
equipment : standard, lux ury
fuel : petrol, diesel

<<RootComponentType>>

1..11..1 1.. 11.. 11..51..5 1..11..1

<<requires>> automatic
<<ComponentType>>

2-wheel
<<ComponentType>>

1,9 16V
<<ComponentType>>

1,4 16V
<<ComponentType>>

otto
<<ComponentType>>

gearing
<<ComponentType>>

engine
<<ComponentType>>

accessoires
<<ComponentType>>

lights
color : yellow, white

<<ComponentType>>

car
color : red, green, black
type : baseline, city, sport
equipment : standard, luxury
fuel : petrol, diesel

<<RootComponentType>>

1..11..1 1..11..11..51..5 1..11..1

<<requires>>

automat ic
<<ComponentType>>

2-wheel
<<ComponentType>>

1,9 16V
<<ComponentType>>

otto
<<ComponentType>>

gearing
<<ComponentType>>

engine
<<ComponentType>>

lights
color : yellow, white

<<ComponentType>>

car
color : red, green, black
type : baseline, ci ty, sport
equipment : standard, luxury
fuel : petrol , diesel

<<RootComponentType>>

1..11..1 1..11..1 1..11..1

1,9
16V

<<ComponentType>
>1,4

16V

<<ComponentType>
>

ott
o

<<ComponentType>
>

gearing

<<ComponentType>
> engin

e

<<ComponentType>
>accessoires

<<ComponentType>
> l ight

scolor : yell ow,
white

<<ComponentType>
>

car
color : red, green,

blacktype : baseline, city,
sportequipment : standard,
luxuryfuel : petrol,

diesel

<<RootComponentType>
>

1..
1

1..
1

1..
1

1..
1

1..
5

1..
5

1..
1

1..
1

Rapid Knowledge Base Development for Product Configuration Systems 13

Figure 7.4 Contextual Diagram GREPbaseline

 In order to define a precondition for the contextual diagram GREPbaseline, the
designer of the knowledge base simply reduces the domain of the attribute type to
“baseline” (see Figure 7.4). The constraint fuel=”petrol” can be entered in a similar
way. Finally, a graphical constraint automatic gearing requires 1,4 16V engine is defined
using a requires dependency.
 The example contextual diagram of Figure 7.4 is translated as follows into the logic
representation of a configuration problem, where DDroot corresponds to the derived
domain description of Section 7.3.3.
 An automatic gearing requires a 1_4_16V engine:

type(ID1, car) ∧ ResultSet1={ID1} ∧ connected_set_a(ResultSet1, type, ResultSet2)
∧ Val1 ∈ ResultSet2 ∧ Val1 = baseline ∧ type(ID2, automatic) ∧ conn(ID1,
gearing, ID2, car) ⇒ ∃ID3 type(ID3, 1_4_16V) ∧ conn(ID3, car, ID1, engine).

The fuel must be “petrol”:
type(ID1, car) ∧ ResultSet1={ID1} ∧ connected_set_a(ResultSet1, type, ResultSet2)
∧ Val1∈ ResultSet2 ∧ Val1=baseline ∧ connected_set_a(ResultSet1, fuel,
ResultSet3) ∧ Val2 ∈ ResultSet3 ⇒ (Val2=petrol).

GREPPbaseline

Constraints of
GREPbaseline

automatic
<<ComponentType>>

2-wheel
<<ComponentType>>

1,9 16V
<<ComponentType>>

1,4 16V
<<ComponentType>>

otto
<<ComponentType>>

4-wheel
<<ComponentType>>

diesel
<<ComponentType>>

engine
<<ComponentType>> lights

color : "yellow", "white"

<<ComponentType>>

accessoires
<<ComponentType>>

car
painting : "red", "green", "black"
type : "baseline"
equipment : "standard", "luxury"
fuel : "petrol"

<<ComponentType>>

1..51..5

gearing
<<ComponentType>>

<<requires>>

14 Domain Oriented Systems Development

7.6 RELATED WORK

The goal of Aldanondo et al.1) is to propose modeling concepts enabling a non-computer
specialist to describe generic configuration models. Based on a set of requirements
concerning different classes of configuration problems a set of modeling concepts is
presented which is based on the Dynamic CSP (see Mittal,Falkenhainer30)) approach.
This approach seems to have its advantages when modeling configuration problems for
Dynamic CSP solving, but also seems to be restricted to the representation of different
kinds of variables with the corresponding constraints. Compared to the approach
presented in this chapter, the problem of representing configuration knowledge on an
abstract level is solved by providing a graphical representation of problem variables
rather than using representations which are decoupled from a specific problem
representation. An overview of different representation formalisms used in knowledge-
based configuration is given in Stumptner41).
 In Tiihonen et al.44) a set of modeling concepts for building configuration models
on a conceptual level is presented which is similar to the modeling concepts presented in
Soininen et al.40). In addition to these modeling concepts a set of modeling guidelines is
proposed in order to support a correct application of the concepts. Compared to our
approach, no concepts for representing constraints are defined, furthermore no clear
semantics for the modeling concepts are given.
 In the recent years several fields in AI focused research on the improvement of
inter-operability of knowledge-based systems by developing ontologies. In
Chandrasekaran et al.10) an ontology is defined as a theory about the sorts of objects,
properties of objects, and relationships between objects that are possible in a specified
domain of knowledge. An earlier definition was given by Neches et al.31) who define an
ontology as follows: “An ontology defines the basic terms and relations comprising the
vocabulary of a topic area as well as the rules for combining terms and relations to define
extensions to the vocabulary”. Also a well known definition of the term ontology is
given in Gruber26) who defines an ontology as an “explicit specification of a
conceptualization”. Cranefield,Purvis12) propose the application of UML as ontology
construction language as an alternative to the AI approaches such as KIF (Neches et
al.31)). The usage of UML is motivated by the graphical representation of the modeling
concepts which is more intuitive than a linear textual representation. Furthermore the
existence of a large group of users which is already familiar with the UML is seen as a
strong argument for the application of the language. Compared to the approach presented
in this chapter there is no support for automatic translation of ontologies into an
executable representation. In Robbins et al.37) an approach is presented for applying
UML for modeling software architectures. The built-in extension mechanisms of UML
are applied in order to define an ADL9-specific meta-model inside UML, i.e. a UML
profile for exchanging architecture descriptions. In this context OCL is used to formulate
constraints (well-formedness rules) on the meta-model.
 In Bourdau,Cheng8) a formal semantics for OMT33) object model diagrams is given.
A formal description of the system architecture containing the allowed states of the
system is generated, which can be used to support verification and validation tasks. The
main focus of this work is the generation of a formal specification in order to support the
assessment of requirement specifications, whereas our approach concentrates on the
definition of translation rules which support the automatic generation of a knowledge
base which can be directly incorporated into a configuration environment.

9 Architecture Description Language.

Rapid Knowledge Base Development for Product Configuration Systems 15

 The requirement for concepts supporting a precise definition of constraints on
object-oriented models motivated the development of the Object Constraint Language
(OCL45)). However, the semantics of the language is semiformal, i.e. it is defined in
terms a context free grammar and a set of additional textual descriptions35). In order to
support e.g. testing a specification (represented in OCL) against an actual
implementation, a precise semantics of the specification language is a prerequisite. In
Richters,Gogolla34) a precise definition of the OCL is presented which similar to an
algebraic specification. Baar et al.6) discuss experiences in the application of OCL in
industrial software development processes. In principle, OCL seems to be quite useful
and software engineers and even domain experts with a technical background are able to
apply OCL for stating formal constraints on a given object-model. Especially software
engineers accepted OCL because of the similarities of its syntax to object-oriented
programming languages. However, Baar et al.6) point out that additional, more intuitive
concepts are needed in order to support an effective introduction of OCL constraints.
They made the observation that software engineers tried to change an objects state, what
is prohibited by the declarative semantics of OCL. In order to tackle this challenge, Baar
et al.6) introduce the notion of constraint schemes. These schemes represent
parameterizable constraints, which can be differently instantiated depending on the actual
situation. For example, a constraint schema could restrict the occurrence of objects of a
class to an upper bound. In this case the upper bound is represented by a variable which
must be instantiated in order to instantiate the corresponding OCL constraint.
 Mechanisms for structuring knowledge bases in the configuration domain are
discussed in Fleischanderl,Haselböck25), where concepts similar to packages are applied
in order to structure large configuration knowledge bases. Mechanisms for structuring
configuration knowledge bases are also discussed in Feldkamp et al.16), where the SyDeR
approach is presented. For resolving the problem of defining complex constraints over
the product structure, the concept of an interface is introduced. Using interfaces, complex
constraints are not assigned to components, but are part of the interface which describes
a connection between several components. Compared to this approach of using explicit
interface definitions in order to organize complex constraints, contextual diagrams
reorganize constraints themselves by using preconditions as structuring criteria.

7.7 CONCLUSIONS AND FUTURE WORK

In this chapter we have presented the basic concepts for improving the configuration
knowledge base development process by applying and extending the basic modeling
concepts provided by the Unified Modeling Language (UML). The approach enhances
the application of Software Engineering techniques to knowledge-based systems by
providing a knowledge-acquisition front-end for knowledge-based configuration
systems. Extensible standard design languages like UML are able to provide a basis for
introducing and applying rigorous formal descriptions of application domains. These
languages are comprehensible and are widely adopted in established industrial software
development processes. The automated generation of specialized software applications
allows rapid generation of prototypes and furthermore improves the requirements
engineering phase through short feedback cycles. Software development departments are
enabled to incorporate formal description languages into their standard development
process. The application of systems based on such languages is no more restricted to
specialists with corresponding knowledge in the area of formal description languages.
The design model is comprehensible for domain experts as well and can be adapted and
validated without the need of specialists. By applying domain-specific modeling

16 Domain Oriented Systems Development

concepts domain experts are enabled to acquire configuration knowledge without having
knowledge in modeling configuration knowledge bases using proprietary representations
of configurator languages. This significantly contributes to a reduction of the knowledge
acquisition bottleneck. Since the configuration knowledge base is represented on a
conceptual level, configuration knowledge bases maintenance can be realized as well on
a conceptual level, which leads to an increased degree of maintainability.
 The application of the graphical modeling concepts of UML has its limits when
building configuration knowledge bases10, since in most domains there exist constraints
which can not be represented graphically. The Object Constraint Language (OCL) is a
language integrated in UML which was exactly developed for this purpose. In this work
we have shown how to apply OCL for the formulation of complex constraints on UML
configuration models.
 The increasing size and complexity of configuration knowledge bases requires the
provision of adequate modeling and structuring mechanisms. When modeling highly
variant products which offer the customer a vast amount of interdependent options and
choices, expressiveness restrictions are approached when using one single diagram.
When acquiring configuration knowledge one has to cope with an intermingled and
interdependent structural and functional product architecture. Exactly this challenge
makes additional graphical representation concepts necessary. Motivated by the high
complexity of large configuration knowledge bases we proposed a structuring
mechanism called contextual diagrams.
 There are a couple of further issues in the context of developing knowledge-based
configuration systems, which we consider as a subject of future work. Knowledge
acquisition using a conceptual modeling language (such as the UML) has shown to
increase the applicability of knowledge-based configuration systems. However, the
question has to be answered how to extend this approach in order to integrate additional
and alternative concepts, such as natural language interfaces, which would allow the
domain expert to explain the product structure and corresponding constraints in a more
intuitive way without having knowledge in applying conceptual modeling techniques.
The development of configurator user interfaces is strongly correlated to the
development of configurator knowledge bases, since changes in the knowledge base
trigger change requests for the corresponding user interface. Consequently, the support
of the automatic construction of the configurator user interface implies corresponding
reductions in development efforts. As has been shown in this chapter, modeling
techniques from the area of Software Engineering have great potential in increasing the
applicability of formal methods. Similar to interface generators in 4GL development
environments, configurator user interfaces could be generated from the conceptual
representation of the configuration knowledge base, i.e. an UML model of a configurable
product can be further used to automatically generate the corresponding configurator
user interface. The provision of software supporting the automatic generation of
configurator user interfaces must be seen as a first step towards the realization of a
sophisticated presentation layer for complex products and services. Different types of
users (inexperienced, expert, etc.), different interaction styles (configuration from
scratch, case-based configuration), and different preferences concerning products
(customer is interested in multimedia personal computers, customer is primarily
interested in server systems) impose the requirement for developing concepts for
adaptive, i.e. personalisable user interfaces for configuration systems. The question has
to be answered, whether the presented approach to knowledge acquisition can be
enhanced in order to consider personalization concepts as well. The vision in this field

10 In other domains as well.

Rapid Knowledge Base Development for Product Configuration Systems 17

could be to build a “virtual salesman” (some kind of configuration agent), which actively
supports a personalized configuration process, i.e. determines the way the product is
presented to the customer and the way the configuration system interacts with the
customer.
 One major task in the context of distributed configuration is the identification of
concepts for integrating different configuration systems based on different knowledge
representation formalisms. The component-port representation used in our work for
formalizing configuration models built in UML has shown to be a widely accepted
representation formalism for configuration problems. However, a general architecture for
integrating different configurators has to be identified, which supports the integration of
heterogenous configuration systems as well. Agent-based approaches for integrating
knowledge-based systems seem to be a promising approach for the configuration
domain. Agent communication languages (such as KQML22)) support the communication
between heterogenous knowledge-based systems, furthermore the corresponding
knowledge representation languages enable the construction of ontologies, which support
knowledge interchange between the engaged systems. The challenge here is to define
ontologies suitable for integrating a large set of configuration systems.
 The Semantic Web (Berners-Lee2)) is the vision of developing enabling
technologies for the Web which support access to its resources not only to humans but as
well to applications often denoted as agent-based systems providing services such as
information brokering, information filtering, intelligent search or synthesis of services.
The technology provided by the Semantic Web community seems to be applicable for the
configuration domain as well – especially for describing the capability of configuring
certain product types as a kind of Web service and as a basis for defining common
ontologies used as communication basis in distributed configuration.

BIBLIOGRAPHY

1) Aldanondo, M., Moynard, G. and Hamou, K.H.: General configurator requirements
and modeling elements, In Workshop on Configuration, edited by Stumptner, M.,
(Berlin), pp. 1-6 (2000).

2) Berners-Lee, T.: Weaving the Web, (Orion Business Books) (1999).
3) Anderson, D.M.: Agile Product Development for Mass Customization, McGraw-Hill

(1997).
4) Akman, V., and Surav, M., Steps Towards Formalizing Context: In AI Magazine,

Vol. 17, pp. 55-72 (1996).
5) Barker, V.E., O’Connor, D.E., Bachant, J.D. and Soloway, E.: Expert systems for

configuration at Digital: XCON and beyond, In Communications of the ACM, Vol.
32, No. 3, pp. 298-318 (1989).

6) Baar, T., Hähnle, R., Sattler, T. and Schmitt, T.H.: Entwurfsmustergesteuerte
Erzeugung von OCL Constraints, In Informatik 2000, edited by Mehrhorn, K. and
Snelting, G., Vol. 30, Jahrestagung der Gesellschaft für Informatik, (Springer), pp.
389-404 (2000).

7) Booch, G.: Object-Oriented Analysis and Design with Applications, In Addison
Wesley Object Technology Series (1994).

8) Bourdeau, R.H. and Cheng, B.: A Formal Semantics of Object Models, In IEEE
Transactions on Software Engineering, Vol. 21, No. 10, pp. 799-821(1995).

9) Cameron, J.:JSP&JSD: The Jackson Approach to Software Methodology, 2nd edition,
IEEE Computer Society (1989).

18 Domain Oriented Systems Development

10) Chandrasekaran, B., Josephson, J. and Benjamins, R.: What Are Ontologies, and
Why do we Need Them? In IEEE Intelligent Systems, Vol. 14, No. 1, pp. 20-26
(1999).

11) Cook, S. and Daniels, J.:Designing Object Systems – Object Oriented Modeling
with Syntropy, (Prentice Hall) (1994).

12) Cranefield, S. and M. S. Purvis: UML as an Ontology Modelling Language, In
Proceedings of the Workshop on Intelligent Information Integration, (16th
International Conference on Artificial Intelligence, Stockholm) (1999).

13) Charlton, C. and Wallace, K:Reminding and context in design, In Proceedings 6th
International Conference on Artificial Intelligence in Design (AID’oo), (Boston:
Kluwer Academic Publishers), pp. 569-588 (2000).

14) Diller, A.: Z – An Introduction to Formal Methods, John Wiley & Sons (1994).
15) Delisle, N.M. and Schwartz, M.D.: Contexts – a partitioning concept for hypertext,

In ACM Transactions on Information Systems, Vol. 5, No. 2, pp. 168-186 (1987).
16) Feldkamp, F., Heinrich, M. And Gramann, M.: SyDeR System Development For

Reusability, In AIEDAM Vol. 12, No. 4, pp. 373-382 (1998).
17) Felfernig A. and Zanker, M.: Diagrammatic Acquisition of Functional Knowledge

for Product Configuration Systems with the Unified Modeling Language, In
Proceedings to International Conference on Theory and Application of Diagrams
(Diagrams’2000), Springer Lecture Notes in Artificial Intelligence, Vol. 1889,
(Edinburgh), pp. 361-375 (2000).

18) Felfernig, A., Friedrich, G. and Jannach, D.: UML as domain-specific language for
the construction of knowledge-based configuration systems. International Journal of
Software Engineering and Knowledge Engineering (IJSEKE), 10,4: pages 449-469
(2000).

19) A. Felfernig, G. Friedrich, and D. Jannach: Generating product configuration
knowledge bases from precise domain extended UML models, In Proceedings 12th
International Conference on Software Engineering and Knowledge Engineering,
(Chicago), pp. 284-293 (2000).

20) Felfernig, A., Friedrich, G., Jannach, D. and Stumptner, D.: Consistency-Based
diagnosis of Configuration Knowledge Bases, In Proceedings of the 14th European
Conference on Artificial Intelligence (ECAI‘2000), (Berlin), pp. 146-150 (2000).

21) Felfernig, A., Jannach, D. and Zanker, M.: Contextual Diagrams as Structuring
Mechanisms for Designing Configuration Knowledge Bases in UML. In
Proceedings of 3rd International Conference on the Unified Modeling Language
(UML’2000), Springer Lecture Notes in Computer Science, Vol. 1939, (York), pp.
240-254 (2000).

22) Finin, T., Labrou, Y. and Mayfield, J.: KQML as an agent communication language,
In Software Agents, edited by Bradshaw, J., (Cambridge: MIT Press) (1997).

23) Friedrich, G. And Stumptner, M.: Consistency-Based Configuration, In AAAI
Workshop on Configuration, Technical Report WS-99-05, (Orlando), pp. 35-40
(1999).

24) Fleischanderl, G. And Friedrich, G.: A. Haselböck, H. Schreiner, and M. Stumptner,
Configuring Large Systems Using Generative Constraint Satisfaction, In IEEE
Intelligent Systems, Special Issue on Configuration, Vol. 13, No. 4, edited by
Freuder, E. and Falting, B., (IEEE) pp. 59-68 (1998).

25) Fleischanderl, G. and Haselböck, A.: Thoughts on Partitioning Large-Scale
Configuration Problems, In AAAI Fall Symposium on Configuration, edited by
Faltings, B. and Freuder, E., pp. 45-54 (1996).

26) Gruber. T.: A translation approach to portable ontology specifications, Knowledge
Acquisition, pp. 199-220 (1993).

Rapid Knowledge Base Development for Product Configuration Systems 19

27) Jacobson, I., Christerson, M. and Övergaard, G.: Object-oriented Software
Engineering – A Use-Case Driven Approach, (Addison Wesley) (1992).

28) McCarthy, J., 1993: Notes on formalizing context. In Proceedings of the 13th IJCAI,
(Chambery, France) pp. 555-560 (1993).

29) Mittal, S. and Frayman, F.: Towards a Generic Model of Configuration Tasks,. In
Proceedings of the 11th IJCAI, (Detroit) pp. 1395-1401 (1989).

30) Mittal, S. and Falkenhainer, B.: Dynamic Constraint Satisfaction Problems, In
Proceedings AAAI 1990, (Boston), pp. 25-32 (1990).

31) Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, Senator, T. and Swartout, W.:
Enabling technology for knowledge sharing, In AI Magazine, Vol. 12 No. 3, pp. 36-
56 (1991).

32) Unified Modeling Language Specification Ver. 1.3 June (1999).
33) Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W.: Object-

Oriented Modeling and Design, In Prentice Hall International Editions, (New
Jersey) (1991).

34) Richters, M. and Gogolla, M.: On Formalizing the UML Object Constraint
Language OCL, In Proceedings 17th International Conference on Conceptual
Modeling (ER’98) (1998).

35) Rational Software, Microsoft, Hewlett Packard, Oracle, Sterling Software, MCI
Systemhouse, Unisys, ICON Computing, Intellicorp, I-Logix, IBM, ObjecTime,
Platinum Technology, Ptech, Taskon, Reich Technologies, and Softeam, OCL
Specification ver. 1.1. (1997).

36) Rumbaugh, J., Jacobson, I. and Booch, G.: The Unified Modeling Language
Reference Manual, (Addison Wesley) (1998).

37) Robbins, J.E., Medvidovic N., Redmiles, D.F. and Rosenblum D.S.: Integrating
Architecture Description Languages with a Standard Design Method, In
Proceedings 20th ICSE, (Kyoto) pp. 209-218 (1998).

38) Stumptner, M. and Haselböck. A.: A generative constraint formalism for
configuration problems, In Advances in Artificial Intelligence: Proceedings of the 3rd
Congress of the Italian Association for Artificial Intelligence AI*IA’93, edited by
Torasso, P., (Springer, Berlin, Heidelberg) pp. 302-313 (1993).

39) Siegel, M., Sciore, E. and Salveter, S.: A Method for automatic rule derivation to
support semantic query optimization, In ACM Transactions on Database Systems,
Vol. 17, pp. 563-600 (1992).

40) Soininen, T., Tiihonen, J., Männistö, T. and Sulonen, R.: Towards a General
Ontology of Configuration, in AIEDAM, Vol. 12, No. 4, pp. 357-372 (1998).

41) Stumptner. M.: An overview of knowledge-based configuration, In AI
Communications, Vol. 10, No. 2 (1997).

42) Schreiber, A.T., Wielinga, B.J., DeHoog, R., Akkermans, H. and van de Velde, W.:
CommonKADS: A Comprehensive Methodology for KBS Development, In IEEE
Transactions on Knowledge and Data Engineering, Vol. 9, No. 6, pp.28-37 (1994).

43) Theodorakis, M., Analyti, A., Constantopoulos, P. and Spyratos, N.: Context in
information bases, In Proceedings of 3rd International Conference on Cooperative
Information Systems (CoopIS’98), (New York City: IEEE Computer Society), pp.
260-270 (1998).

44) Tiihonen, J., Lehtonen, T., Soininen, T., Pulkinen, A., Sulonen, R. and Riitahuhta,
A.: Modeling Configurable Product Families, In Proceedings of the 12th
International Conference on Engineering Design (ICED’99), edited by Lindemann,
U., Birkhofer, H., Meerkamm, H. and Vajna, S., (München), pp. 1139-1142 (1999).

45) Warmer, J. and Kleppe, A.: The Object Constraint Language – Precise Modeling
with UML, In Addison Wesley Object Technology Series (1999).

