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ABSTRACT 

Knowledge-based product configuration systems play an important role in modern 
business strategies. These systems support the sales representative or the technical 
engineer to cope with the complexity of configurable products, the huge number of 
available variants, and different restrictions on allowed product constellations. 
Nowadays, typical knowledge-based configuration systems are not well integrated into 
standard software development processes but use proprietary knowledge representation 
formalisms which are not understandable for domain experts. In this chapter we show 
how the Unified Modeling Language (UML) can be applied as domain-oriented notation 
for the design of configuration knowledge bases. The provided modeling concepts can be 
used for comprehensible knowledge acquisition and are given precise semantics, such 
that an automatic translation to executable configuration knowledge bases is feasible. 
Following a discussion on these modeling concepts we show how their expressiveness 
can be enhanced by using the Object Constraint Language (OCL) and how the 
construction of complex configuration models can be supported.  

7.1 INTRODUCTION 

In today’s rapidly changing, globalizing markets traditional mass production paradigms 
appear anachronistic. Mass production is increasingly replaced by customer-individual 
production of highly variant products. Companies are forced to diversify their product 
spectrum in order to be able to fulfill the individual needs of customers. The additional 
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costs for offering customer-individual products must be minimized in order to be able to 
provide customizable products in a competitive fashion. “Mass-customization”3) 

appeared as a new paradigm representing the trend towards the production of highly 
variant products under mass production speed and pricing conditions. This paradigm 
imposes increasing demands on the development and maintenance of software 
supporting sales and production of highly variant products. This software must be able to 
handle rapidly changing, complex constraints on the products and on the corresponding 
processes supporting quotation, order processing, production, delivery, and maintenance. 
In particular knowledge-based configuration systems (configurators) are increasingly 
applied for supporting processes related to highly variant products. 
 There exists a variety of application domains for product configuration systems. 
One well known application domain is the telecommunication industry, where 
telecommunication systems support switching functionality for enterprise-wide telephone 
services. Furthermore, these systems also provide additional services like voice-over-ip, 
messaging services, ISDN connections, video-telephony, or video-conferencing. In this 
context configurators are used for calculating bill-of-materials representing the 
configuration of a switching system. The configuration of audiovisual equipment, 
automobiles, computer systems, trucks, airplanes, modular furniture (kitchens etc.), 
industrial products (e.g. valves, actuators, or controls), or light control systems are 
further application areas for knowledge-based configuration. 
 Effective application of configuration technology implies a number of 
improvements. The configuration system automatically checks the requirements imposed 
by the customer with regard to given marketing constraints, technical constraints, and 
constraints concerning the production process, which reduces the response time to given 
customer requests. Automated configuration avoids errors in the quotation and order 
processing phase. Consequently, time consuming reconfigurations of non-realizable 
orders are avoided and the time between equipment sales and delivery/installation of the 
product is decreased. 
 Configuration systems can significantly contribute to the improvement of processes 
related to highly variant products and are of strategic importance for enterprises. 
However, the development and maintenance of these systems is facing a set of 
challenges, which must be tackled in order to allow an effective application of 
configuration technology. First, the complexity of the task requires the sophisticated 
knowledge of experts. This knowledge must be effectively acquired and translated into a 
corresponding configuration knowledge base. Second, configurator development time is 
short and strictly limited since the development of the product and the product 
configuration system have to be done in parallel. Finally, the configuration knowledge 
base has to be adapted continuously because of changing sets of available components 
and configuration constraints. 
 In the following we show, how the knowledge acquisition task for configuration 
knowledge bases can be effectively supported by applying the Unified Modeling 
Language (UML36)) as domain-specific representation language for building 
configuration knowledge bases. We employ UML, since this language is widely applied 
in industrial software development as a standard design language supporting the software 
development process starting with the requirement analysis phase proceeding until the 
implementation phase. UML has a built-in constraint language which supports a formal 
definition of constraints on models that are designed using the graphical concepts of 
UML class diagrams. UML is extensible for domain-specific purposes, i.e. the semantics 
of the basic modeling concepts of the language can be further refined in order to be able 
to provide domain-specific modeling concepts, which allow a more intuitive construction 
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of the corresponding models. Finally, we have made excellent experiences in using UML 
designs for validation by technical experts. 

7.2 CONFIGURATION TASK 

In order to avoid time-consuming development of specific designs for each customer, 
customizable products are designed following a building block principle where basic 
parts can be configured into different sorts of assemblies. A configuration task can be 
characterized through a set of available component types, a description of their 
properties, namely attributes and possible attribute values, connection points (also called 
ports), and constraints on legal combinations of those constitutive elements. Given some 
customer requirements, the result of computing a configuration is a set of components, 
corresponding attribute valuations, and connections satisfying all constraints and 
customer requirements. 
 In Felfernig et al.20) an application-independent first-order logic-based definition of 
a configuration task is given. In this work a configuration problem is defined as a logic 
theory based on two sets of logical sentences. 
 
1. Domain description (DD). Configurations are composed from components 
corresponding to component definitions in a component catalog – these definitions are 
described by a set of types. Attributes of component types are described by the function 
attributes, the domains of those attributes are described by the function dom. Finally, 
ports of component types are described by the function ports. The domain of these 
functions are sets of constants describing the corresponding attributes, attribute domains, 
and ports. These sets including a set of constraints on legal combinations of components, 
connections, and value instantiations are assumed to be contained in the set DD. 
 
2. System Requirements Specification (SRS). Most configuration problems incorporate 
some kind of additional requirements (e.g. customer requirements) which describe 
additional constraints respectively initial components which must be part of the 
configuration. These constraints are contained in SRS. 
 In Felfernig et al.20) a configuration problem is defined as follows. 
 
Definition (Configuration Problem). In general a configuration problem is described 
by a triple (DD,SRS,CONL), where DD and SRS are sets of logical sentences and CONL 
is a set of predicate symbols. DD represents the domain description, and SRS specifies 
the particular system requirements which define an individual configuration problem 
instance. A configuration CONF is described by a set of positive ground literals whose 
predicate symbols are in the set of CONL. 
 Note that - depending on the configuration domain – the set of predicates in CONL 
is extensible if needed. For example, a predicate could be defined specifying that a 
certain port of a component must be left unconnected. A consistent configuration is 
defined as follows in Felfernig et al.20). 
 
Definition (Consistent Configuration). Given a configuration problem 
(DD,SRS,CONL), a configuration CONF is consistent iff DD ∪ SRS ∪ CONF is 
satisfiable.  
 The intuitive definition of a consistent configuration allows determining the 
validity of partial configurations, but does not require completeness of the configuration 
(e.g. a partial configuration only containing a floppy disk is a consistent configuration). It 
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is necessary, that a configuration explicitly includes all needed components as well as 
their connections and attributes. Therefore we need to introduce an explicit formula for 
each predicate symbol in CONL (completeness axioms) to guarantee this completeness 
property. In order to stay within first-order logic, this property is modeled by first order 
formulae. A set of completeness axioms20) assures the completeness of CONF. Such a 
complete configuration is denoted as CCONF. 
 
Definition (Valid and Irreducible Configuration). Let (DD, SRS, CONL) be a 
configuration problem. A configuration CONF is valid iff DD ∪ SRS ∪ CCONF is 
satisfiable. CONF is irreducible if there exists no other valid configuration CONFsub 
such that CONFsub ⊂  CONF.  
 As mentioned in Friedrich,Stumptner23) the above definitions represent a high-level 
view of the language developed and used in the COCOS configuration project24), which 
used as representation formalism a generative constraint satisfaction scheme that can be 
defined by a direct mapping from the consistency-based semantics sketched in this 
section. 

7.3 BUILDING CONFIGURATION KNOWLEDGE BASES IN UML 

The unavailability of methods for handling the increasing size and complexity of 
software systems triggered the “software crisis” in traditional software development. 
Similarly, knowledge-based systems development experienced increasing challenges 
triggered by the size and complexity of the knowledge bases. R1/XCON5) can be seen as 
an representative example for the complexity of knowledge base maintenance. In 1989 
the knowledge base had about 31.000 components and about 17.500 rules (engineering, 
manufacturing, and marketing rules) with a changing rate about 40% (rule additions, 
deletions, and modifications) per year. 
 In order to tackle these challenges, a number of methods and tools supporting the 
expert system development process were proposed (e.g. Schreiber et al.42)). Using these 
approaches, the development of knowledge-based systems was supported and improved 
by the provision of diagrammatic notations and formal description languages. Similar 
approaches were also developed in Software Engineering research in order to effectively 
handle the implementation of software systems and to support a structured development 
process for these systems. These approaches have progressed from functional 
decomposition and data-driven techniques and methods (e.g. Cameron9)) to object-
oriented analysis and design techniques and methods such as Rumbaugh et al.33), Booch 
et al.7). Moving from data-driven and functional approaches, research focused on the 
development of object-oriented analysis and design approaches, which are nowadays 
also accepted in industrial software development processes. These approaches reduce the 
“semantic gap” between the considered universe of discourse and the abstract model and 
increase the understandability and maintainability of the resulting models (Jacobson et 
al.27)). 
 The Unified Modeling Language (UML36)) is the result of an integration of the 
object-oriented approaches of Booch et al.7), Jacobson et al.27), and  Rumbaugh et al.33), 
which is well established in industrial software development processes. UML is 
applicable throughout the whole software development process from the requirements 
analysis phase to the implementation phase providing different notations. One of the 
major advantages of UML is the principle of extensibility of the basic meta-model. 
Following this principle the basic modeling concepts defined in the UML meta-model 
can be further extended in order to support the definition of domain-specific modeling 
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concepts for specific application areas. The set of domain-specific modeling concepts 
including constraints on their syntactical usage are defined in an UML profile1. 
 State-of-the-art approaches for developing software systems provide methods and 
techniques which support an effective construction of those systems. However, the 
transformation of informal requirements into an implemented system is still a challenge 
for the development of knowledge-based systems as well as for traditional software 
development. In the following we show how to integrate the development of 
configuration systems into the standard software development process by using UML as 
a knowledge acquisition front-end which allows the automatic generation of executable 
configuration knowledge bases. 

7.3.1 Example: UML Configuration Model 

For the following discussions the simple UML configuration model shown in Figure  
will serve as working example. 
 This model represents the generic product structure, i.e. all possible variants of a 
configurable car. The basic structure of the product is modeled using classes, 
generalization, and aggregation. The set of possible products is restricted through a set of 
constraints which are related to technical restrictions, economic factors, and restrictions 
according to the production process. The used modeling concepts can be seen as an 
ontology in the sense of Chandrasekaran et al.10), i.e. ontologies are theories about the 
sorts of objects, properties of objects, and relations between objects that are possible in a 
specified domain of knowledge. This ontology represents an integration of different basic 
configuration paradigms (Soininen et al.40)). Component types (represented through the 
stereotype “ComponentType”) represent the constituent parts of a configuration model; 
car, engine, or gearing are examples for such component types (see Figure 7.1). 
Component types are organized in a part-of hierarchy, where aggregations between 
component types can be either composite or shared aggregations in the sense of the UML 
semantics32). 
 Furthermore, resources and functions are further basic concepts which are 
represented as stereotyped classes in a UML configuration model2. Parts of a 
configuration problem can be seen as a resource balancing task, where some of the 
component types produce some resources and others are the consumers. In many cases 
some parts of the configuration model contain information which are relevant for the 
customer, e.g. not every screw of a car must be presented to the customer. Functions are 
used to represent exactly those parts of the configuration model. Similar to component 
types, functions can be organized using partonomies and taxonomies. 
 Beside the structural information, a configuration model also contains a set of 
constraints on the correct usage of the components and functions within a configuration. 
Such constraints can also be expressed graphically. 
 In Figure 7.1 the existence of an automatic gearing requires the existence of an otto 
engine within the final configuration. Furthermore, a 4-wheel gearing must not be used 
in combination with a diesel engine within the final configuration. These constraints can 
be used to express basic restrictions on the configuration model, but must not be seen as 
sufficient for expressing all kinds of constraints on a configuration model. In order to 

                                                 
1 For building product models in UML we have defined an UML configuration profile. 
2 These concepts are not used in the example model. 
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express constraints on configuration models which cannot be expressed graphically, we 
employ the Object Constraint Language (OCL)3. 
 
 

 
Figure 7.1 A simple UML Configuration Model 

7.3.2 Introducing Domain-specific Modeling Concepts in UML 

In order to introduce a modeling concept into the configuration profile, the following 
steps are necessary. 
 
1. Define the new concept (a new stereotype or tagged value4) and state the well-

formedness rules for its correct usage within the model. Well-formedness rules are 
expressed as OCL constraints on the UML metamodel. In order to restrict the usage 
of the stereotyped dependency “requires” (see the requires relation between the 
automatic gearing and the otto engine in Figure 7.1) to the connection of two 
component types, the following constraint can be formulated. 

 
context dependency inv: 
self.stereotype.name=”requires” implies 
self.client.stereotype.name=”ComponentType” and 
self.supplier.stereotype.name=”ComponentType”. 

 

                                                 
3 The application of OCL will be discussed in Section 7.4. 
4 Stereotypes and tagged values are basic mechanisms provided by UML for defining restrictions on the UML 
meta-model. 
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2. Define the semantics of the concept for the configuration domain by stating the 
facts and constraints induced to the logic theory when using the concept. These 
translation rules are discussed in detail in Felfernig et al.18),19). 

 
 In order to state additional constraints on the product model which cannot be 
expressed graphically, the Object Constraint Language (OCL) can be employed. In 
Section 7.4 we sketch, how OCL can be used to define additional constraints on 
configuration models. 

7.3.3 Derivation of Configuration Knowledge Bases 

In order to support the automatic construction of a configuration knowledge base from 
the conceptual UML model, a clear definition of the semantics of the employed modeling 
concepts has to be provided (see Felfernig et al.18),19)). This is achieved by defining 
translation rules from the conceptual configuration model to a logical theory20). Such a 
theory includes the description of a part library and constraints on those parts. The result 
of the translation is a set of first-order logical sentences that form a domain description 
which can be used by a configuration system which is based on the component-port 
representation (Mittal,Frayman29) and Friedrich,Stumptner23)).  
 In the following we do not discuss the translation rules in detail, but give a couple 
of examples for the result of applying the translation rules. A discussion of the rules for 
translating UML class diagrams and OCL constraints into configuration knowledge bases 
can be found in Felfernig et. al18),19).  
 The configuration knowledge base which corresponds to the UML configuration 
model of Figure 7.1 is the following. 
 

types={car, accessoires, gearing, engine, lights, 2-wheel, automatic, 4-wheel, otto,  
            1-4-16V, 1-9-16V, diesel}. 
attributes(car)={painting, type, equipment, fuel}. 
attributes(lights)={color}. 
dom(car, painting)={red, green, black}. 
dom(car, type)={baseline, city, sport}. 
dom(car, equipment)={standard, luxury}. 
dom(car, fuel)={petrol, diesel}. 
dom(lights, color)={yellow, white}. 
ports(car)={accessoires1,...,accessoires5, gearing, engine, lights}. 
ports(accessoires)={car}. 
ports(gearing)={car}. 
ports(engine)={car}. 
ports(lights)={car}. 

 
 The component types of Figure 7.1 are translated into a set of types with 
corresponding attributes and attribute domains (dom). Furthermore, the partof 
relationships are translated into port constants which are used to express connections 
between components in a configuration. 
 The constraints defined on the configuration model of Figure 7.1 are translated into 
the logic representation of a configuration problem as follows. It is assumed, that 
CONL={type/2, conn/4, val/3}, where type(ID, a) indicates that ID is of type a, 
conn(ID1, p1, ID2, p2) indicates that component ID1 is connected via port p1 with ID2 
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and ID2 is connected with ID1 via port p2. Furthermore, val(ID, a, c) indicates that the 
attribute a of ID has the value c. 
 

An “automatic” gearing requires the existence of an “otto” engine: 
type(ID1, automatic) ∧ type(ID2, car) ∧ conn(ID1, car, ID2, gearing) ⇒ ∃ ID3 
type(ID3, otto) ∧ conn(ID3, car, ID2, engine). 
 
A “4-wheel” gearing is incompatible with a ”diesel” engine: 
type(ID1, 4-wheel) ∧ type(ID2, car) ∧ type(ID3, diesel) ∧ conn(ID1, car, ID2, 
gearing) ∧ conn(ID3, car, ID2, engine) ⇒ false. 

 
 The form of logical sentences is restricted to a subset of range-restricted5 first-
order-logic with set-extension, the variables6 are all-quantified if not explicitly 
mentioned. In order to assure decidability, the term-depth is restricted to a fixed number. 
For implementation purposes the logical sentences can be regarded as instantiation 
schemes23) for the translation into other representation formalisms, such as a Generative 
Constraint Satisfaction Problem (GCSP38)) representation. 
 A configuration result consists of a set of positive ground literals whose predicate 
symbols are in CONL. Assuming that CONL={type/2, conn/4, val/3}, the following set 
of ground literals could represent a configuration result CONF. 
  

CONF={type(id1, car). type(id2, accessoires), type(id3, automatic). type(id4, 
1_4_16V). type(id5, lights). val(id1, painting, red). val(id1, type, city). val(id1, 
equipment, standard). val(id1, fuel, petrol). val(id5, color, white). conn(id1, 
accessoires, id2, car). conn(id1, gearing, id3, car). conn(id1, engine, id4, car). 
conn(id1, lights, id5, car)}. 

7.4 EXTENDING CONFIGURATION MODELS USING OCL 

The Object Constraint Language (OCL45)) is an expression language based on first-order 
logic which enables the definition of constraints on object-oriented models. OCL was 
strongly influenced by the development of Syntropy11), an object-oriented modeling 
language which combined the diagrammatic representation concepts of OMT33) with the 
formality of Z14). OCL complements the graphical (semiformal) notation of UML by 
providing a precise vocabulary for expressing constraints on graphical models. Since 
UML is a wide-spread modeling language in industry, OCL itself establishes an 
increasingly important role in the field of formal specification languages. However, the 
definition of the OCL semantics is based on a proposed syntax (represented as context-
free grammar) and additional textual descriptions and examples. Although this is a quite 
intuitive approach for demonstration purposes, a corresponding formal definition is 
needed. In order to provide a semantics for OCL constraints in product configuration, we 
propose a set of translation rules that transform those constraints into the logic 
representation discussed in the previous sections7. 
 A constraint imposed to the configuration model of Figure 7.1 could state that a red 
car requires yellow lights. This constraint can be formulated as follows in OCL. 
 

                                                 
5 Every variable of the consequence part of the clause is also contained in the antecedent part. 
6 Variables are starting with an upper case letter. 
7 A discussion of the translation rules can be found in Felfernig et al.19). 
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context car inv: 
car.painting=”red” implies car.lights.color=”yellow” 

 
 This constraint is built from the following parts: 
 

• Context: A context describes for which class the constraint has to hold. In the 
above example the constraint has to hold for all car instances. 

• Navigation expression: The navigation expression car.lights results in the lights 
component connected with the car instance. The name “lights” is the default 
name of the association from the class car to the class lights since no association 
name is specified here32). 

• Attribute access: access to attributes of objects. In the above example, the 
attributes painting and color are accessed. 

• Operator “=”: In the above example this operator is used for comparing the 
attribute values of painting and color with corresponding constants (“red”, 
“yellow”). 

 
 Such an OCL constraint can be translated into a closed logical formula following 
an implication schema, where the right hand side (RHS) contains the all-quantified 
variables which correspond to the result of the evaluations of navigation expressions and 
the corresponding operations. The left hand side (LHS) contains the corresponding 
logical consequence, i.e. the evaluation results of the right hand side connected with the 
logical and relational operators. 
 The example OCL constraint on the car configuration model is translated as follows 
into the logic representation of a configuration problem. 
 

type(ID1, car) ∧ ResultSet1={ID1} ∧ connected_set_a(ResultSet1, painting, 
ResultSet2) ∧ connected_set(ResultSet1, lights, ResultSet3) ∧ 
connected_set_a(ResultSet3, color, ResultSet4) ∧ Val1∈ ResultSet2 ∧ Val2 ∈ 
ResultSet4  ⇒ (Val1=red  ⇒ Val2=yellow). 

 
 The predicates connected_set and connected_set_a are used to express a component 
navigation respectively an attribute access in a given OCL navigation expression, e.g. 
connected_set(ResultSet1, lights, ResultSet3) expresses the navigation from a car 
instance to the connected light instance, connected_set_a(ResultSet1, painting, 
ResultSet2) expresses an access to the attribute painting of the class car. 

7.5 STRUCTURING CONFIGURATION KNOWLEDGE BASES 

The application of UML for building configuration models is motivated by the wide-
spread use of the language, the high degree of understandability, the extendibility for 
domain-specific purposes, and the availability of a built-in constraint language which 
allows the definition of complex constraints. However, when modeling highly variant 
products, that offer the customer a vast amount of interdependent options, expressiveness 
restrictions of a single (partitioned) diagram are approached. The diagrammatic depiction 
becomes harder to maintain and understand as the number of elements and constraints 
depicted in the diagram increases. In order to improve the understandability and 
maintainability of UML configuration models, we introduce the notion of contextual 
diagrams (see Felfernig et al.17),21)), which provide a means for structuring constraints in 
a configuration model. 
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7.5.1 UML Packages 

Before introducing contextual diagrams, let us have a look at the basic structuring 
mechanisms provided in UML. A package is simply defined in UML as a grouping of 
model elements. Packages themselves may be nested within other packages. It is 
therefore straightforward to partition a diagram into packages under the premise of high 
cohesion among the elements in the same package and low coupling between different 
packages. 
 The strictly defined hierarchical package structure can not only be used to partition 
the model knowledge, but as well to structure the solving process of the underlying 
configuration system. In some cases parts of a configuration problem can be solved more 
or less independently. This property can be used to structure the solving process, which 
leads to smaller problem sizes and less computational complexity in the solving process. 
The partitioning of configuration problems for allowing efficient calculations of 
solutions for large configuration problems is discussed in Fleischanderl,Haselböck25). 
The configuration of switching systems is one of the most complex application areas for 
knowledge-based configuration. As mentioned in Fleischanderl et al.24), configurations 
representing switching systems can become large and complex. Fleischanderl et al.24) 
describe an example system with about 43.000 components, 215.000 attributes and 
120.000 ports. In order to allow an efficient calculation of solutions, the problem domain 
must be separated into different independent sub-problems – exactly this property was 
exploited in Fleischanderl,Haselböck25). 

7.5.2 Additional Structuring Mechanisms 

Parts of the configuration knowledge sometimes apply only in a specific context. For 
example, depending on the country, different keyboards must be added to a personal 
computer configuration, furthermore the language of the operating system must be 
adequately configured. Consequently, the country is a parameter of the configuration 
model, which determines a set of additionally relevant constraints. If the customer wants 
to have a certain type of car (e.g. a car of type baseline), this selection can also impose 
further constraints which only apply in the case that this specific type is selected. Figure 
7.2 shows the result of adding a set of additional constraints to the configuration model 
shown in Figure 7.1. 
 Such constraints can concern different classes sometimes stored in different 
packages of the configuration model. In real world settings, where the number of 
constraints and component types is large, the maintenance of models following the 
strategy shown in Figure 7.2 obviously leads to maintenance problems and is a challenge 
for the knowledge engineer as well as for the technical expert. For example, if constraints 
concerning the type of a car must be changed, these constraints are spread all over the 
configuration model assigned to classes stored in different packages. A closer look at the 
constraints shows that the constraints can be categorized into groups having the same 
preconditions. Exactly this property can be used for partitioning the whole model into 
different views, where each view contains only a restricted set of constraints. We denote 
such kind of views as contextual diagrams. Constraints concerning a specific context are 
organized in a central location (contextual diagram), which significantly alleviates the 
handling of changes. In the example given, constraints concerning the car type baseline 
can be organized in one single contextual diagram. 
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Figure 7.2 Configuration Model with additional constraints 

7.5.3 Contextual Diagrams 

The notion of context has been discussed in different research areas15), 28), 39), 13), 43), 4) 
using quite different interpretations. Overviews of different interpretations of the notion 
of context can be found in Charlton,Wallace13), Akman,Surav4). Informally, a context can 
be interpreted as a general condition under which an event, action, etc. takes place. The 
interpretation of the notion of context used in the following is similar to the notion 
defined in McCarthy28) who proposes a formalism ist(c,p) in order to define a context c, 
in which the proposition p must hold, i.e. p is true in c. On the graphical level contexts 
are represented as contextual diagrams. Using contextual diagrams, the graphical 
representation (GREP) of a configuration knowledge base is organized in a context 
hierarchy (see Figure 7.3). An important relation defined on contexts is “p” (see 
McCarthy28)). Such an relation c1 p c2 defines a partial ordering over contexts meaning 
that the context c2 contains all the information of the context c1 and probably more. 
Except GREProot, each contextual diagram GREPi has an assigned precondition GREPPi, 
which represents the conditions, under which the constraints defined in GREPi apply. 
This precondition can be interpreted as a set of circumstances surrounding the actual 
configuration process, in which an additional set of constraints must hold. The root 
model GREProot contains basic structural elements of the configuration model including 
basic constraints on this model. Contextual diagrams GREPi can be constructed by 
imposing further constraints on a copy of an already existing contextual diagram. The 
result of this construction process is a hierarchy of contextual diagrams (see Figure 7.3), 
in which each contextual diagram GREPi either represents the root of the hierarchy 
(GREProot), or is derived from another contextual diagram. Note that all the preconditions 
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of contextual diagrams starting from GREProot along the path to GREPi are included in 
GREPPi. For example, the precondition GREPP3 of contextual diagram GREP3 in Figure 
7.3 is c including the precondition of GREP1, namely a, i.e. a ∧ c. 
 
 
 

 
Figure 7.3 A simple Context Hierarchy 

 
 
 We define a context as follows: 
 
Definition (Context). A context ci is represented by a set of logical sentences DDi ⊂ 
DD, where DD represents the domain description. DDi contains those logical sentences, 
which solely apply in ci and are derived from a corresponding contextual diagram GREPi 
. 
 Figure 7.4 contains the constraints concerning a car of type baseline, which are 
now included in a separate contextual diagram. GREPPbaseline in this diagram is simply 
the expression type=”baseline”, which can be formulated as OCL constraint. Note that 
the knowledge engineer or the domain expert are not forced to enter this precondition 
textually as OCL constraint, but rather define those restrictions directly in the diagram 
itself, e.g. by reducing the domain of the corresponding attributes8. Constraints, which 
apply in the actual context can also be entered in a similar way. 
 

                                                 
8 More complex conditions must be formulated as OCL expressions. 
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Figure 7.4 Contextual Diagram GREPbaseline 

 
 
 In order to define a precondition for the contextual diagram GREPbaseline, the 
designer of the knowledge base simply reduces the domain of the attribute type to 
“baseline” (see Figure 7.4). The constraint fuel=”petrol” can be entered in a similar 
way. Finally, a graphical constraint automatic gearing requires 1,4 16V engine is defined 
using a requires dependency. 
 The example contextual diagram of Figure 7.4 is translated as follows into the logic 
representation of a configuration problem, where DDroot corresponds to the derived 
domain description of Section 7.3.3.  
 An automatic gearing requires a 1_4_16V engine:  
 

type(ID1, car) ∧ ResultSet1={ID1} ∧ connected_set_a(ResultSet1, type, ResultSet2) 
∧ Val1 ∈ ResultSet2 ∧ Val1 = baseline  ∧ type(ID2, automatic) ∧ conn(ID1, 
gearing, ID2, car) ⇒ ∃ID3 type(ID3, 1_4_16V) ∧ conn(ID3, car, ID1, engine). 
 
The fuel must be “petrol”:  
type(ID1, car) ∧ ResultSet1={ID1} ∧ connected_set_a(ResultSet1, type, ResultSet2) 
∧ Val1∈ ResultSet2 ∧ Val1=baseline ∧ connected_set_a(ResultSet1, fuel, 
ResultSet3) ∧ Val2 ∈ ResultSet3 ⇒ (Val2=petrol). 
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7.6 RELATED WORK 

The goal of Aldanondo et al.1) is to propose modeling concepts enabling a non-computer 
specialist to describe generic configuration models. Based on a set of requirements 
concerning different classes of configuration problems a set of modeling concepts is 
presented which is based on the Dynamic CSP (see Mittal,Falkenhainer30)) approach. 
This approach seems to have its advantages when modeling configuration problems for 
Dynamic CSP solving, but also seems to be restricted to the representation of different 
kinds of variables with the corresponding constraints. Compared to the approach 
presented in this chapter, the problem of representing configuration knowledge on an 
abstract level is solved by providing a graphical representation of problem variables 
rather than using representations which are decoupled from a specific problem 
representation. An overview of different representation formalisms used in knowledge-
based configuration is given in Stumptner41).  
 In Tiihonen et al.44) a set of modeling concepts for building configuration models 
on a conceptual level is presented which is similar to the modeling concepts presented in 
Soininen et al.40). In addition to these modeling concepts a set of modeling guidelines is 
proposed in order to support a correct application of the concepts. Compared to our 
approach, no concepts for representing constraints are defined, furthermore no clear 
semantics for the modeling concepts are given. 
 In the recent years several fields in AI focused research on the improvement of 
inter-operability of knowledge-based systems by developing ontologies. In 
Chandrasekaran et al.10) an ontology is defined as a theory about the sorts of objects, 
properties of objects, and relationships between objects that are possible in a specified 
domain of knowledge. An earlier definition was given by Neches et al.31) who define an 
ontology as follows: “An ontology defines the basic terms and relations comprising the 
vocabulary of a topic area as well as the rules for combining terms and relations to define 
extensions to the vocabulary”. Also a well known definition of the term ontology is 
given in Gruber26) who defines an ontology as an “explicit specification of a 
conceptualization”. Cranefield,Purvis12) propose the application of UML as ontology 
construction language as an alternative to the AI approaches such as KIF (Neches et 
al.31)). The usage of UML is motivated by the graphical representation of the modeling 
concepts which is more intuitive than a linear textual representation. Furthermore the 
existence of a large group of users which is already familiar with the UML is seen as a 
strong argument for the application of the language. Compared to the approach presented 
in this chapter there is no support for automatic translation of ontologies into an 
executable representation. In Robbins et al.37) an approach is presented for applying 
UML for modeling software architectures. The built-in extension mechanisms of UML 
are applied in order to define an ADL9-specific meta-model inside UML, i.e. a UML 
profile for exchanging architecture descriptions. In this context OCL is used to formulate 
constraints (well-formedness rules) on the meta-model. 
 In Bourdau,Cheng8) a formal semantics for OMT33) object model diagrams is given. 
A formal description of the system architecture containing the allowed states of the 
system is generated, which can be used to support verification and validation tasks. The 
main focus of this work is the generation of a formal specification in order to support the 
assessment of requirement specifications, whereas our approach concentrates on the 
definition of translation rules which support the automatic generation of a knowledge 
base which can be directly incorporated into a configuration environment. 

                                                 
9 Architecture Description Language. 
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 The requirement for concepts supporting a precise definition of constraints on 
object-oriented models motivated the development of the Object Constraint Language 
(OCL45)). However, the semantics of the language is semiformal, i.e. it is defined in 
terms a context free grammar and a set of additional textual descriptions35). In order to 
support e.g. testing a specification (represented in OCL) against an actual 
implementation, a precise semantics of the specification language is a prerequisite. In 
Richters,Gogolla34) a precise definition of the OCL is presented which similar to an 
algebraic specification. Baar et al.6) discuss experiences in the application of OCL in 
industrial software development processes. In principle, OCL seems to be quite useful 
and software engineers and even domain experts with a technical background are able to 
apply OCL for stating formal constraints on a given object-model. Especially software 
engineers accepted OCL because of the similarities of its syntax to object-oriented 
programming languages. However, Baar et al.6) point out that additional, more intuitive 
concepts are needed in order to support an effective introduction of OCL constraints. 
They made the observation that software engineers tried to change an objects state, what 
is prohibited by the declarative semantics of OCL. In order to tackle this challenge, Baar 
et al.6) introduce the notion of constraint schemes. These schemes represent 
parameterizable constraints, which can be differently instantiated depending on the actual 
situation. For example, a constraint schema could restrict the occurrence of objects of a 
class to an upper bound. In this case the upper bound is represented by a variable which 
must be instantiated in order to instantiate the corresponding OCL constraint. 
 Mechanisms for structuring knowledge bases in the configuration domain are 
discussed in Fleischanderl,Haselböck25), where concepts similar to packages are applied 
in order to structure large configuration knowledge bases. Mechanisms for structuring 
configuration knowledge bases are also discussed in Feldkamp et al.16), where the SyDeR 
approach is presented. For resolving the problem of defining complex constraints over 
the product structure, the concept of an interface is introduced. Using interfaces, complex 
constraints are not assigned to components, but are part of the interface which describes 
a connection between several components. Compared to this approach of using explicit 
interface definitions in order to organize complex constraints, contextual diagrams 
reorganize constraints themselves by using preconditions as structuring criteria. 

7.7 CONCLUSIONS AND FUTURE WORK 

In this chapter we have presented the basic concepts for improving the configuration 
knowledge base development process by applying and extending the basic modeling 
concepts provided by the Unified Modeling Language (UML). The approach enhances 
the application of Software Engineering techniques to knowledge-based systems by 
providing a knowledge-acquisition front-end for knowledge-based configuration 
systems. Extensible standard design languages like UML are able to provide a basis for 
introducing and applying rigorous formal descriptions of application domains. These 
languages are comprehensible and are widely adopted in established industrial software 
development processes. The automated generation of specialized software applications 
allows rapid generation of prototypes and furthermore improves the requirements 
engineering phase through short feedback cycles. Software development departments are 
enabled to incorporate formal description languages into their standard development 
process. The application of systems based on such languages is no more restricted to 
specialists with corresponding knowledge in the area of formal description languages. 
The design model is comprehensible for domain experts as well and can be adapted and 
validated without the need of specialists. By applying domain-specific modeling 
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concepts domain experts are enabled to acquire configuration knowledge without having 
knowledge in modeling configuration knowledge bases using proprietary representations 
of configurator languages. This significantly contributes to a reduction of the knowledge 
acquisition bottleneck. Since the configuration knowledge base is represented on a 
conceptual level, configuration knowledge bases maintenance can be realized as well on 
a conceptual level, which leads to an increased degree of maintainability.  
 The application of the graphical modeling concepts of UML has its limits when 
building configuration knowledge bases10, since in most domains there exist constraints 
which can not be represented graphically. The Object Constraint Language (OCL) is a 
language integrated in UML which was exactly developed for this purpose. In this work 
we have shown how to apply OCL for the formulation of complex constraints on UML 
configuration models. 
 The increasing size and complexity of configuration knowledge bases requires the 
provision of adequate modeling and structuring mechanisms. When modeling highly 
variant products which offer the customer a vast amount of interdependent options and 
choices, expressiveness restrictions are approached when using one single diagram. 
When acquiring configuration knowledge one has to cope with an intermingled and 
interdependent structural and functional product architecture. Exactly this challenge 
makes additional graphical representation concepts necessary. Motivated by the high 
complexity of large configuration knowledge bases we proposed a structuring 
mechanism called contextual diagrams. 
 There are a couple of further issues in the context of developing knowledge-based 
configuration systems, which we consider as a subject of future work. Knowledge 
acquisition using a conceptual modeling language (such as the UML) has shown to 
increase the applicability of knowledge-based configuration systems. However, the 
question has to be answered how to extend this approach in order to integrate additional 
and alternative concepts, such as natural language interfaces, which would allow the 
domain expert to explain the product structure and corresponding constraints in a more 
intuitive way without having knowledge in applying conceptual modeling techniques. 
The development of configurator user interfaces is strongly correlated to the 
development of configurator knowledge bases, since changes in the knowledge base 
trigger change requests for the corresponding user interface. Consequently, the support 
of the automatic construction of the configurator user interface implies corresponding 
reductions in development efforts. As has been shown in this chapter, modeling 
techniques from the area of Software Engineering have great potential in increasing the 
applicability of formal methods. Similar to interface generators in 4GL development 
environments, configurator user interfaces could be generated from the conceptual 
representation of the configuration knowledge base, i.e. an UML model of a configurable 
product can be further used to automatically generate the corresponding configurator 
user interface. The provision of software supporting the automatic generation of 
configurator user interfaces must be seen as a first step towards the realization of a 
sophisticated presentation layer for complex products and services. Different types of 
users (inexperienced, expert, etc.), different interaction styles (configuration from 
scratch, case-based configuration), and different preferences concerning products 
(customer is interested in multimedia personal computers, customer is primarily 
interested in server systems) impose the requirement for developing concepts for 
adaptive, i.e. personalisable user interfaces for configuration systems. The question has 
to be answered, whether the presented approach to knowledge acquisition can be 
enhanced in order to consider personalization concepts as well. The vision in this field 

                                                 
10 In other domains as well. 
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could be to build a “virtual salesman” (some kind of configuration agent), which actively 
supports a personalized configuration process, i.e. determines the way the product is 
presented to the customer and the way the configuration system interacts with the 
customer. 
 One major task in the context of distributed configuration is the identification of 
concepts for integrating different configuration systems based on different knowledge 
representation formalisms. The component-port representation used in our work for 
formalizing configuration models built in UML has shown to be a widely accepted 
representation formalism for configuration problems. However, a general architecture for 
integrating different configurators has to be identified, which supports the integration of 
heterogenous configuration systems as well. Agent-based approaches for integrating 
knowledge-based systems seem to be a promising approach for the configuration 
domain. Agent communication languages (such as KQML22)) support the communication 
between heterogenous knowledge-based systems, furthermore the corresponding 
knowledge representation languages enable the construction of ontologies, which support 
knowledge interchange between the engaged systems. The challenge here is to define 
ontologies suitable for integrating a large set of configuration systems. 
 The Semantic Web (Berners-Lee2)) is the vision of developing enabling 
technologies for the Web which support access to its resources not only to humans but as 
well to applications often denoted as agent-based systems providing services such as 
information brokering, information filtering, intelligent search or synthesis of services. 
The technology provided by the Semantic Web community seems to be applicable for the 
configuration domain as well – especially for describing the capability of configuring 
certain product types as a kind of Web service and as a basis for defining common 
ontologies used as communication basis in distributed configuration. 
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