
Transforming UML Domain Descriptions
into Configuration Knowledge Bases for the

Semantic Web
Alexander Felfernig

�

Gerhard Friedrich
�

Dietmar Jannach
�

Markus Stumptner
�

Markus Zanker
�

�

Institut für Wirtschaftsinformatik und Anwendungssysteme, Produktionsinformatik
Universität Klagenfurt, Universitätsstr. 65-67,

9020 Klagenfurt, Austria
felfernig,friedrich,jannach,zanker@ifit.uni-klu.ac.at

�

Advanced Computing Research Center
University of South Australia

5095 Mawson Lakes (Adelaide), SA, Australia
mst@cs.unisa.edu.au

Abstract. In this chapter we emphasize how we can integrate Web-based sales sys-
tems for highly complex customizable products and services by making use of the de-
scriptive representation formalisms of the Semantic Web. Building on the equivalence
between the consistency based definition and the description logic based definition of
configuration [1], we are capable of transforming our application domain-independent
meta-model for modeling configuration knowledge [2] into the emerging standards of
the Semantic Web initiative, such as DAML+OIL. Furthermore, we discuss how these
standardized description languages can be used to derive capability descriptions for
semantic configuration Web services.

1 Introduction

The easy access to vast information resources offered by the World Wide Web (WWW) opens
new perspectives for conducting business. One of these is the goal of the research project
CAWICOMS to enable configuration systems to deal simultaneously with configurators of
multiple suppliers over the Web [3]. The technical approach taken resembles state-of-the-art
electronic marketplaces. Many-to-many relationships between customers and different sup-
pliers are enabled, thus replacing inflexible one-to-one relations dating to the pre-internet
era of EDI (electronic data interchange). We resolved the problem of heterogeneity of prod-
uct and catalogue descriptions by imposing a common representation formalism for product
models on all market participants based on UML. The textual representation of the graphical
product models uses XML-Schema definitions. The eXtensible Markup Language (XML1)
serves as a flexible data format definition language that allows to communicate tree structures

1See http://www.w3c.org/xml for reference.

2 A. Felfernig et al.

with a linear syntax. However, single standards for conducting B2B electronic commerce will
not exist. As content transformation between those catalog and document standards is far
from being a trivial task [4], the Semantic Web offers the perspective of dynamic knowledge
transformations by reasoning on semantics.

In this chapter we will outline how configuration systems can flexibly cooperate in an
ontology-based approach through the use of the Web service paradigm. The capability of each
configuration system can be expressed by the evolving language standards of the Semantic
Web initiative [5, 6]. In [1] it is shown that a consistency based and a description logic based
configuration knowledge representations are equivalent under certain restrictions. Therefore,
product model representations in our UML-based meta-model for configuration knowledge
representation can be transformed into OIL resp. DAML+OIL [7]. We showed the transfor-
mation of the configuration meta-model into a configuration knowledge base using predicate
logic already in [2].

In Section 2 we will give an example configuration model and in Section 3 a description
logic based definition of configuration is given. Examples for the translation rules into a
corresponding OIL (Section 4) representation and a discussion on semantic configuration
Web services (Section 5) finally follow.

2 Configuration knowledge base in UML

The Unified Modeling Language (UML) [8] is the result of an integration of object-oriented
approaches of [9, 10, 11] which is well established in industrial software development. UML
is applicable throughout the whole software development process from the requirements anal-
ysis phase to the implementation phase. In order to allow the refinement of the basic meta-
model with domain-specific modeling concepts, UML provides the concept of profiles - the
configuration domain specific modeling concepts presented in the following are the consti-
tuting elements of a UML configuration profile which can be used for building configuration
models. UML profiles can be compared with ontologies discussed in the AI literature, e.g.
[12] defines an ontology as a theory about the sorts of objects, properties of objects, and rela-
tionships between objects that are possible in a specific domain. UML stereotypes are used to
further classify UML meta-model elements (e.g. classes, associations, dependencies). Stereo-
types are the basic means to define domain-specific modeling concepts for profiles (e.g. for
the configuration profile). In the following we present a set of rules allowing the automatic
translation of UML configuration models into a corresponding OIL representation.

For the following discussions the simple UML configuration model shown in Figure 1
will serve as a working example. This model represents the generic product structure, i.e.
all possible variants of a configurable

����������	�
�
. The basic structure of the product is mod-

eled using classes, generalization, and aggregation. The set of possible products is restricted
through a set of constraints which are related to technical restrictions, economic factors, and
restrictions according to the production process. The used concepts stem from connection-
based [13], resource-based [14], and structure-based [15] configuration approaches. These
configuration domain-specific concepts represent a basic set useful for building configuration
knowledge bases and mainly correspond to those defined in the de facto standard configura-
tion ontologies [2, 16]:

� Component types. Component types represent the basic building blocks a final product
can be built of. Component types are characterized by attributes. A stereotype Component

Transforming UML Domain Description into Configuration KBs for the Semantic Web 3

is introduced, since some limitations on this special form of class must hold (e.g. there
are no methods).

� Generalization hierarchies. Component types with a similar structure are arranged in a
generalization hierarchy (e.g. in Figure 1 a CPU1 is a special kind of CPU).

� Part-whole relationships. Part-whole relationships between component types state a
range of how many subparts an aggregate can consist of (e.g. a Computer contains at
least one and at most two motherboards - MBs).

� Compatibilities and requirements. Some types of components must not be used to-
gether within the same configuration - they are incompatible (e.g. an SCSIUnit is in-
compatible with an MB1). In other cases, the existence of one component of a specific
type requires the existence of another specific component within the configuration (e.g an
IDEUnit requires an MB1). The compatibility between different component types is ex-
pressed using the stereotyped association incompatible. Requirement constraints between
component types are expressed using the stereotype requires.

� Resource constraints. Parts of a configuration task can be seen as a resource balancing
task, where some of the component types produce some resources and others are con-
sumers (e.g., the consumed hard-disk capacity must not exceed the provided hard-disk
capacity). Resources are described by a stereotype Resource, furthermore stereotyped de-
pendencies are introduced for representing the producer/consumer relationships between
different component types. Producing component types are related to resources using the
produces dependency, furthermore consuming component types are related to resources
using the consumes dependency. These dependencies are annotated with values represent-
ing the amount of production and consumption.

� Port connections. In some cases the product topology - i.e., exactly how the components
are interconnected - is of interest in the final configuration. The concept of a port (stereo-
type Port) is used for this purpose (e.g. see the connection between Videocard and Screen
represented by the stereotype conn and the ports � ���
 � � ��� 	 and ��� �

�� ��� ��).

3 Description logic based definition of a configuration task

The following description logic based definition of a configuration task [1] serves as a foun-
dation for the formulation of rules for translating UML configuration models into a corre-
sponding OIL representation2. The definition is based on a schema S=(�
 , �
 , ��
) of
disjoint sets of names for concepts, roles, and individuals [17], where ��
 is a disjunctive
union of roles and features.
Definition 1 (Configuration task) In general we assume a configuration task is described by
a triple (��� , ����� ,

���������
). ��� represents the domain description of the configurable

product and ����� specifies the particular system requirements defining an individual config-
uration task instance.

������� �
comprises a set of concepts

�"!$#&%�')(+*-, 	�
 and a set of roles

2In the following we assume that the reader is familiar with the concepts of OIL. See [7] for an introductory
text.

4 A. Felfernig et al.

videoport
<<Port>>

CPU

clockrate : 300..500

<<Component>>

Videocard
<<Component>>

22

screenport
<<Port>>

1 0..11 0..1

<<conn>>

HDUnit
<<Component>>

MB
<<Component>>

1..21..2

11

Screen
<<Component>>

22

Computer
<<Component>>

1..61..6 1..21..2 0..10..1

Software
<<Component>> 0..1000..100

CPU1

clockrate : 300

<<Component>>

value=100

value=50

value=10000

value=20000

Textedit
<<Component>>

DTPSoftware
<<Component>>

IDEUnit
<<Component>>

Capacity
<<Resource>>

<<consumes>>

<<consumes>>

<<produces>> MB1
<<Component>>

<<requires>>

SCSIUnit
<<Component>>

<<produces>>

<<incompatible>>

MB2
<<Component>>

CPU2

clockrate : 500

<<Component>>

<<requires>>

Figure 1: Example configuration model

� !$#&%�')(+* , ��
 which serve as a configuration language for the description of actual config-
urations. A configuration knowledge base

���
= � ��� ����� is constituted of sentences in a

description language. �
In addition we require that roles in

� ����� �
are defined over the domains given in

� !$#�%�')(+*
, i.e.

��� �
	
�� � (� =
� � � � and

� � ��� � (� =
� � � � must hold for each role � (��

� !$#&%�')(+* , where
� � ��� ���� !�����!������ � �"! � (. We impose this restriction in order to assure that

a configuration result only contains individuals and relations with corresponding definitions
in
� !$#�%�')(+*

and � !$#&%�')(+* . The derivation of ��� will be discussed in the next section, an ex-
ample for ����� could be ”two

�$#&% � of type
�'#(%$)

and one
�'#&%

of type
�'#(%+*

”, i.e.
����� = , (instance-of �) ,

�'#(%$)
), (instance-of � * ,

�$#&%$)
), (instance-of �.- ,

�$#&%+*
) / , where

���������
= , �$#&%$)

,
�'#(%+*

, ... / .
Based on this definition, a corresponding configuration result (solution) is defined as

follows [18], where the semantics of description terms are given using an interpretation
� � 02143
5 �768 3:9 , where 143 is a domain of values and

�768 3 is a mapping from concept de-
scriptions to subsets of 1'3 and from role descriptions to sets of 2-tuples over 1;3 .
Definition 2(Valid configuration) Let � �<0=1 3 5 �768 3 9 be a model of a configuration knowl-
edge base

���
,
��������� � �?> #�%�')(+* � � > #�%�')(+*

a configuration language, and
�'@�BA �C?DFEHGJI �FK DFLNMJI

a description of a configuration.
C?DFEOGJI

is a set of tuples 0 � (5QP RTSUPWV IYX[Z 9
for every

� (\� �]> #�%�')(+*
, where P RTSTP:V IYX^Z � , � � � 5 �[�_� 5 � � %_� / � � 3(is the set of individuals of

concept
� (

. These individuals identify components in an actual configuration. K DFLNMJI
is a

set of tuples 0 �]` 5WaUb GcLNMFIedgf 9 for every �]` � � > #�%�')(+*
where aUb GcLNMJIhdgf � , 0 �ji � 5 � i � 9.5 �[�[� 50 �ji_kml 5 � i_kml 9 / � � 3` is the set of tuples of role �?` defining the relation of components in an

actual configuration. �
A valid configuration for our example domain is

�'@�OA
= , 0 �'#&%;) 5 , �) 5 � * / 9j5^0 �'#&%�* 5 , �j-n/ 9j50po �) 5 , ��) / 9.5g0po � * 5 , �H* / 9j5g0 mb-of-cpu 5 , 0 ��) 5 �) 9j5n0 ��) 5 � * 9j5g0 �H* 5 � * 9 / 9j5 �q��� / .

Transforming UML Domain Description into Configuration KBs for the Semantic Web 5

The automatic derivation of an OIL-based configuration knowledge base requires a clear
definition of the semantics of the used UML modeling concepts. In the following we define
the semantics of UML configuration models by giving a set of corresponding translation
rules into OIL. The resulting knowledge base restricts the set of possible configurations, i.e.
enumerates the possible instance models which strictly correspond to the UML class diagram
defining the product structure.

The equivalence between the definitions of valid configurations in description logic (Def-
inition 2) and the definition in first-order predicate logic [19] is shown in [1]. It refers to
the translation function � 0 6 9 in [17] that translates concepts, roles, terms, and axioms of a
description language (���) without transitive closure into equivalent formulas in the first or-
der predicate logic ���� !��
	 . Note that ���� !���	 allows only monadic and dyadic predicates and
restricts the number of counting quantifiers and subformulas to at most three free variables.
Building on this equivalence we are therefore capable of transforming our UML based con-
figuration models [2] into the Semantic Web standards, such as DAML+OIL, that are founded
on description logics.

4 Translation of UML configuration models into OIL

As already pointed out in the previous section the translation rules give exact semantics to
the UML modeling concepts. In [2] translation rules that transform the graphical represen-
tation into a predicate logic configuration knowledge base have been already given. In the
following,

� �� #
denotes the graphical representation of the UML configuration model.

For the model elements of
� �� #

(i.e., component types, generalization hierarchies, part-
whole relationships, requirement constraints, incompatibility constraints) we propose rules
for translating those concepts into a description logic based representation. The definition is
based on a schema S=($
 , ��
 , � �) of disjoint sets of names for concepts, roles, and indi-
viduals [17], where ��
 is a disjunctive union of roles and features.
Rule 1 (Component types): Let � be a component type in

� �� #
, then

� ������� is extended by class-def � .
For all attributes

�
of � in

� �� #
, and

�
the domain of

�
in
� �� #

,

� ������� is extended by

slot-def
�
. � : slot-constraint

�
cardinality 1

�
. �

Example 1 (Component type
�'#&%

):

class-def
�$#&%

.
slot-def ��� � ��� � � 	�
 .
�'#(%

: slot-constraint ��� � ��� � � 	�
 cardinality 1 ((min 300) and (max 500)).
disjoint

�$#&% o �
.

disjoint o � ��� �

�� .
... �
Subtyping in the configuration domain means that attributes and roles of a given compo-

nent type are inherited by its subtypes. In most configuration environments a disjunctive and
complete semantics is assumed for generalization hierarchies, where the disjunctive seman-
tics can be expressed using the

� � � i � � � 	 axiom and the completeness can be expressed by

6 A. Felfernig et al.

forcing the superclass to conform to one of the given subclasses as follows.
Rule 2 (Generalization hierarchies): Let

�
and

�
� 5 �q�q� 5 � % be classes (component types) in� �� #

, where
�

is the superclass of
�

� 5 �q�q� 5 � % , then

� ������� is extended by

�
� 5 �q�q� 5 � % : subclass-of

�
.

�
: subclass-of (

�
� or ... or

� %
).� � (

,
� ` � , � � 5 ���q� 5 � % / (

� (��� � `) : disjoint
� (� ` . �

Example 2 (
�'#(%$)

,
�'#(%+*

subclasses of
�'#(%

):

�'#(%$)
: subclass-of

�$#&%
.

�'#(%+*
: subclass-of

�$#&%
.

�'#(%
: subclass-of (

�'#(%$)
or
�$#&%+*

).
disjoint

�$#&%$) �$#&%+*
. �

Part-whole relationships are important model properties in the configuration domain. In
[20], [16], [21] it is pointed out that part-whole relationships have quite variable semantics
depending on the application domain. In most configuration environments, a part-whole re-
lationship is described by the two basic roles partof and haspart. Depending on the intended
semantics, different additional restrictions can be placed on the usage of those roles. Note
that we do not require acyclicity since particular domains such as software configuration
allow cycles on the type level. In the following we discuss two facets of part-whole relation-
ships which are widely used for configuration knowledge representation [16] and are also
provided by UML, namely composite and shared part-whole relationships. In UML compos-
ite part-whole relationships are denoted by a black diamond, shared part-whole relationships
are denoted by a white diamond3. If a component is a compositional part of another com-
ponent then strong ownership is required, i.e., it must be part of exactly one component. If a
component is a non-compositional (shared) part of another component, it can be shared be-
tween different components. Multiplicities used to describe a part-whole relationship denote
how many parts the aggregate can consist of and between how many aggregates a part can be
shared if the aggregation is non-composite. The basic structure of a part-whole relationship
is shown in Figure 2.
Rule 3 (Part-whole relationships): Let � and

�
be component types in

� �� #
, where

�
is a

part of � and
�����

is the upper bound, � ��� the lower bound of the multiplicity of the part, and
���	�

is the upper bound, � �
� the lower bound of the multiplicity of the whole. Furthermore let
w-of-p and p-of-w denote the names of the roles of the part-whole relationship between � and
�

, where w-of-p denotes the role connecting the part with the whole and p-of-w denotes the
role connecting the whole with the part, i.e., p-of-w �� � � � � ��	 , w-of-p � #$� ��	�����k #����

, where#'� � 	����gk #����T� , � � ��	���� > #2k�� #�� (���� 5 � � ��	�������������� � / . A part
�

can be either a shared part (concept
� � ��	��������!� �

) or a composite part (concept
� � ��	 > #2k�� #!� (����

). Given a part-whole relationship be-
tween

�
and � in

� �� #
, then

� ������� is extended by

3Note that in our "$#	%'&�(�)+*-, configuration example we only use composite part-whole relationships - as
mentioned in [16], composite part-whole relationships are often used when modeling physical products, whereas
shared part-whole relationships are used to describe abstract entities such as services.

Transforming UML Domain Description into Configuration KBs for the Semantic Web 7

slot-def w-of-p subslot-of
#'� � 	���� k # ���

inverse p-of-w domain
�

range � �
slot-def p-of-w subslot-of haspart inverse w-of-p domain � range

� �
�

: subclass-of (
� � ��	 �������!� �

or
� � ��	7> #2k�� #!� (���

).
�

: slot-constraint w-of-p min-cardinality � � � � .
�

: slot-constraint w-of-p max-cardinality
����� � .

� : slot-constraint p-of-w min-cardinality � ��� � .
� : slot-constraint p-of-w max-cardinality

��� � �
.

MB
<<Component>>

CPU

clockrate : 300..500

<<Component>>

1..1

1..2

+cpu-of-mb

+mb-of-cpu

lbw
ubw

lbp

ubp

w

p

p-of-w

w-of-p

Figure 2: Part-whole relationship (p:part, w: whole)

Remark 1: The following properties have to hold for shared and composite part-whole rela-
tionships.

� Each shared part is connected to at least one whole, i.e.,

(�������)
� � � 	�� �����!���

: slot-constraint
� � ��	������������!� �

min-cardinality 1 top.

� Each composite part is connected to exactly one whole, i.e.,

(�������)
� � � 	 > #2k�� #!� (���

: slot-constraint
� � � 	���� > #2k�� #!� (���

min-cardinality 1 top.
slot-constraint

� � ��	���� > #2k�� #!� (����
max-cardinality 1 top.

� A shared part cannot be a composite part at the same time, i.e.,

(�������) disjoint
� � ��	 � �����!��� � � � 	 > #2k�� #!� (���

Example 3 (o �
partof

� � ��� � 	�
�
):

slot-def computer-of-mb subslot-of
� � ��	�����> #2k�� #�� (����

inverse mb-of-computer domain o �
range

����������	�
� �
slot-def mb-of-computer subslot-of � � � � � ��	

inverse computer-of-mb domain
����������	�
�

range o � �o �
: subclass-of (

� � ��	 �������!� �
or
� � ��	7> #2k�� #!� (���

)o �
: slot-constraint computer-of-mb min-cardinality

) ����������	�
�
.o �

: slot-constraint computer-of-mb max-cardinality
) � ��������	�
�

.
� � ������	�
�

: slot-constraint mb-of-computer min-cardinality 1 o �
.

� � ������	�
�
: slot-constraint mb-of-computer max-cardinality 2 o �

. �

8 A. Felfernig et al.

Necessary part-of structure properties. In the following we show how the constraints
contained in a product configuration model (e.g., an

� � %"� � 	 �
�� � � �
 � an o �)
) can

be translated into a corresponding OIL representation. For a consistent application of the
translation rules it must be ensured that the components involved are parts of the same sub-
configuration, i.e., the involved components must be connected to the same instance of the
component type that represents the common root4 for these components - the components are
within the same mereological context [16]. This can simply be expressed by the notion that
component types in such a hierarchy must each have a unique superior component type in� �� #

. If this uniqueness property is not satisfied, the meaning of the imposed (graphically
represented) constraints becomes ambiguous, since one component can be part of more than
one substructure and consequently the scope of the constraint becomes ambiguous.

For the derivation of constraints on the product model we introduce the macro
� � � � � 	 �

as an abbreviation for a navigation expression over roles. For the definition of
�m� � � � 	 � the

UML configuration model can be interpreted as a directed graph, where component types are
represented by vertices and part-whole relationships are represented by edges.
Definition 3 (Navigation expression): Let

� � 	 � � � � 5 � %� be a path from a component type
� � to a component type � % in

� �� #
represented through a sequence of expressions of the

form � � � � � � 	j� � (5 � ` 5 �B� �
�!�(=
denoting a direct partof relationship between the component

types
� (

and
� ` . Furthermore,

�B� �
 !�(
represents the name of the corresponding � � � � � ��	

role. Such a path in
� �� #

is represented as
� � 	 � � � � 5 � %� =� � � � � � � 	j� � � 5 � � 5 �m� �
[>

�
 5 � � � � � ��	j� � � 5 � � 5 � � �
[>

�
 5 ���q� 5 � � � � � � 	j� � %�� � 5 � % 5 �m� �
[> %��

�
��

Based on the definition of
� � 	 � � � � 5 � %� we can define the macro

�m� � � � 	 � � � � 5 � %� as
slot-constraint

� � �
^>
�

has-value(slot-constraint
� � �
^>

� ...
has-value(slot-constraint

� � �
^> %��
� has-value � %)...).

For the translation into �����
	�� the macro
� � � � � 	 � � � � 5 � %� is defined as��

� 5 � � 5 ���q� 5 � %�� � 5 � %��
name

>
�
� �

� 5�� ��
name

>
�
� �

� 5 � �
�� �q��� � name

> %��
�
� � % 5 � %�� �

�� � % � � %� ,
where � is a free variable quantified outside the scope of this expression and represents

an instance of concept �) . �
Example 4 (

� � � � � 	 � � � � ��� � 	�
� 5 �'#&%;)^
):

slot-constraint mb-of-computer
has-value (slot-constraint cpu-of-mb has-value

�$#&%$)
). �

The concept of a nearest common root is based on the definition of
� � � � � 	 � as follows.

Definition 4 (Nearest common root) A component type
�

is denoted as nearest common
root of the component types � � and � � in

� �� #
, iff there exist paths

� � 	 � � � 5 � �

,
� � 	 � � � 5 � �

and there does not exist a component type

���
, where

���
is a part5 of

�
with paths

� � 	 � � ��� 5 � �

,

� � 	 � � � � 5 � �

. �

When regarding the example configuration model of Figure 1, o �
is the nearest common

root of
�'#(%

and � � �
 � � � � � . Note that the component type
����������	�
�

is not a nearest
common root of

�'#&%
and � � �
 � � � � � but the nearest common root of

�'#(%$)
and

� � %"� � 	
(see Figure 3.

4In Figure 1 the component type Computer is the unique common root of IDEUnit and CPU1.
5In this context &�� ,)+#�� is assumed to be transitive.

Transforming UML Domain Description into Configuration KBs for the Semantic Web 9

CPU

clockrate : 300..500

<<Component>>

HDUnit
<<Component>>

MB
<<Component>>

Computer
<<Component>>

CPU1

clockrate : 300

<<Component>>

SCSIUnit
<<Component>>

CPU2

clockrate : 500

<<Component>>

IDEUnit
<<Component>>

1..2

1..6

1..2

1..21..6 1..2

navpath(Computer, CPU1)

navpath(Computer, IDEUnit)

Figure 3: Navigation paths from "$#	%'&�(�)+*-, to "������ and ���
	�����)

Requirement constraints. A requires constraint between two component types � � and � �

in
� �� #

denotes the fact that the existence of an instance of component type � � requires an
instance of component type � � in the same (sub)configuration.
Rule 4 (Requirement constraints): Given the relationship � � requires � � between the com-
ponent types � � and � � in

� �� #
with

�
as nearest common root of � � and � � , then

� ������� is extended by
�
: ((not(

� � � � � 	 � � � 5 � �

)) or

� � � � � � 	 � � � 5 � �

. �
The condition part of the inner implication is a path from the nearest common root to the
component � � ; the consequent is a path to the required component � � .
Example 5 (

� � %"� � 	
requires o �)

):

� � ������	�
�
: ((not (slot-constraint hdunit-of-computer has-value

� � %�� � 	
)) or

(slot-constraint mb-of-computer has-value o �)
)). �

Incompatibility constraints. An incompatibility constraint between a set of component
types � = , � � 5 � � 5 �q��� 5 � % / in

� �� #
denotes the fact that the existence of a tuple of instances

corresponding to the types in � is not allowed in a final configuration (result).
Rule 5 (Incompatibility constraints): Given an incompatibility constraint between a set of
component types � = , � � 5 � � 5 �q�q� 5 � % / in

� �� #
with

�
as nearest common root of , � � 5 � � 5 ���q� 5 � % / ,

then

� ������� is extended by

�
:(not((

�m� � � � 	 � � � 5 � �

) and (

� � � � � 	 � � � 5 � �

) and ... and (

� � � � � 	 � � � 5 � %�))).
Example 6 (� � � � %"� � 	 incompatible with o �)

):

� � ������	�
�
: (not ((slot-constraint

hdunit-of-computer has-value � � � � %"� �) and
(slot-constraint mb-of-computer has-value o �)

))). �

10 A. Felfernig et al.

Resource constraints. In order to introduce resource constraints, additional expressivity
requirements must be fulfilled - this issue will be discussed in [1].

Port connections. Ports in the UML configuration model (see Figure 4) represent physi-
cal connection points between components (e.g., a � � �
 � � � � � can be connected to a ��� �

��
using the port combination � ���
 � � ����	 � and � � �

�� � ��� 	 �). In UML we introduce ports using
classes with stereotype

#���� 	
- these ports are connected to component types using relation-

ships.
In order to represent port connections in OIL, we introduce them via a separate concept# � ��	 6. The role � ����� � 	 indicates the component concept that the port belongs to, the role

� ����	 � � �

determines its name, and the role � � � � describes the relation to the counterpart

port concept of the connected component.
Rule 6 (Port connections): Let , � ,

� / be component types in
� �� #

, , � � ,
� � / be the corre-

sponding connected port types, , � �
,
��� / the multiplicities of the port types with respect to, � ,

� / 7, and , , � �!� � , ���!� � / , , � ����� , � �!��� / / the lower bound and upper bound of the multiplicities
of the port types with respect to , � � ,

� � / , then

� ������� is extended by

class-def
� �

subclass-of
# � ��	

.
class-def

� �
subclass-of

#���� 	
.

� �
: slot-constraint

� ����	 � � �

cardinality 1 (one-of

� �
� ...

� � k �
).8

� �
: slot-constraint � � � � min-cardinality � ����� � �

.
� �

: slot-constraint � � � � max-cardinality
������� � �

.
� �

: slot-constraint � � � � value-type
� �

.
� �

: slot-constraint � � ���$� 	 cardinality 1
�
.

� �
: slot-constraint

� ����	 � � �

cardinality 1 (one-of

� �
� ...

� � k��
).

� �
: slot-constraint � � � � min-cardinality � ����� � � .

� �
: slot-constraint � � � � max-cardinality

������� � �
.

� �
: slot-constraint � � � � value-type

� �
.

� �
: slot-constraint � � ���$� 	 cardinality 1

�
.

Example 7 (� � �
 � � � � � connected to ��� �

��):

class-def � � �
 � ��� ��	 subclass-of
#�����	

.
class-def ��� �

�� � ����	 subclass-of

#���� 	
.

� � �
 � � � ��	 : slot-constraint
� ����	 � � �

cardinality 1 one-of (� � �
 � � ��� 	 � � ���
 � � ��� 	 �).
� � �
 � � � ��	 : slot-constraint � � � � min-cardinality

� ��� �

�� � ��� 	 .
� � �
 � � � ��	 : slot-constraint � � � � max-cardinality

) ��� �

�� � ��� 	 .
� � �
 � � � ��	 : slot-constraint � � � � value-type ��� �

�� � � ��	 .
� � �
 � � � ��	 : slot-constraint � � ���$� 	 cardinality 1 � � �
 � � � � � .
��� �

�� ��� ��	 : slot-constraint

� ��� 	 �m� �

cardinality 1 (one-of ��� �

�� ��� ��	 � ��� �

�� � ����	 �).

6Note that in OIL there are only predicates with arity 1 or 2 available, therefore the representation of port
connections must be realized by the definition of additional concepts.

7In this context no differentiation between lower and upper bound is needed since the number of ports of a
component is exactly known beforehand.

8In this context &���� denotes one &�� port.

Transforming UML Domain Description into Configuration KBs for the Semantic Web 11

Videocard
<<Component>>

Screen
<<Component>>

22

videoport
<<Port>>

screenport
<<Port>>

1..1 0..1

<<conn>>

a b

pa pb

ma
mb

lbpa ubpalbpb ubpb

Figure 4: Ports in the configuration model

��� �

�� ��� ��	 : slot-constraint � � � � min-cardinality
) � � �
 � � ��� 	 .

��� �

�� ��� ��	 : slot-constraint � � � � max-cardinality
) � � �
 � � � ��	 .

��� �

�� ��� ��	 : slot-constraint � � � � value-type � � �
 � � � ��	 .
��� �

�� ��� ��	 : slot-constraint � � ��� � 	 cardinality 1 ��� �

�� . �
Using the port connection structure defined above, the constraint ”a � � �
 � � � � � must be

connected via � � �
 � � ��� 	 � with a ��� �

�� via � � �

�� � ��� 	 � ” can be written as follows.
Example 8:

� ���
 � � � � � : (slot-constraint videoport-of-videocard has-value
((slot-constraint

��� ��	 � � �

has-value (one-of � ���
 � � ����	 �)) and

(slot-constraint � � � � has-value ((slot-constraint � ����� � 	 has-value ��� �

��) and
(slot-constraint

� ����	 � � �

has-value (one-of ��� �

�� � ��� 	 �)))))). �

The application of the graphical modeling concepts presented in this paper has its limits
when building complete configuration knowledge bases. Typically, they do not only include
the product structure itself, but also more complex constraints that cannot be represented
graphically. Happily, (with some minor restrictions discussed in [1]) we are able to represent
these constraints using languages such as OIL or DAML+OIL. UML itself has an integrated
constraint language (Object Constraint Language - OCL [22]) which allows the formulation
of constraints on object structures. The translation of OCL constraints into representations of
Semantic Web ontology languages is the subject of future work, a translation into a predicate
logic based representation of a configuration problem has already been discussed in [23].

5 Semantic configuration Web services

When it comes to multi-site product configuration, problem solving capabilities are dis-
tributed over several business entities that need to cooperate on a customer request for joint
service provision. This Peer-to-Peer (P2P) interaction approach among a dynamic set of par-
ticipants without a clear assignment of client and server roles asks for applying the paradigm
of Web services [24]. It stands for encapsulated application logic that is open to accept re-
quests from any peer over the Web.

Basically, a Web Service can be defined as an interface that describes a collection of
provided operations. Consequently, we can interpret the application logic that configures a

12 A. Felfernig et al.

product (i.e. a configurator) as a standardized Web service. In the CAWICOMS approach [3]
service requests and their replies are enabled by a WebConnector component that owns an
object model layer that accesses the internal constraint representation of the configuration
engine. This object model layer represents the advertised configuration service descriptions.
A service requestor agent can, therefore, impose its service request via an edit-query onto
the object-model layer and retrieves the configuration service result via a publish-query. In
our workbench implementation this matchmaking task is, therefore, performed as part of the
search process for a configuration solution of a constraint-based configurator engine. For the
internal representation of the advertised service models as well as the service requests, an
object-oriented framework for constraint variables is employed [25]. Reasoning on service
requirements as well as on service decomposition is performed by the underlying Java-based
constraint solver.

The offered Web services are employed by interface agents (i.e. the Frontend in terms of
the CAWICOMS architecture) that interact with human users via a Web interface as well as
by configuration agents that outsource configuration services as part of their problem solving
capabilities. Formally, when implementing a Web service the following issues need to be
addressed [24]:
� Service publishing - the provider of a service publishes the description of the service to

a service registry which in our case are configuration agents with mediating capabilities.
Within this registry the basic properties of the offered configuration service have to be
defined in such a way that automated identification of this service is possible.

� Service identification - the requestor of a service imposes a set of requirements which
serve as the basis for identifying a suitable service. In our case, we have to identify those
suppliers that are capable of supplying goods or services that match the specific customer
requirements.

� Service execution - once a suitable service has been identified, the requirements need to be
communicated to the service agent that can be correctly interpreted and executed. UDDI,
WSDL, and SOAP are the evolving technological standards that allow the invocation of
remote application logic based on XML syntax.

Now, following the vision behind the Semantic Web effort [5, 6], the sharing of semantics is
crucial to enable the WWW for applications. In order to have agents automatically searching,
selecting and executing remote services, representation standards are needed that allow the
annotation of meaning of a Web service which can then be interpreted by agents with the help
of ontologies.

In the following, we sketch a Web service scenario that focuses on enabling automated
procurement processes for customisable items (see Figure 5). Basically there are two different
types of agents, those that only offer configuration services (L) and those that act as suppliers
as well as requestors for these services (I). The denotation of agent types derives from view-
ing the informational supply chain of product configuration as a tree9 where a configuration
system constitutes either an inner node (I) or a leaf node (L).

Agents of type I have therefore the mediating functionality incorporated that allows the
offering agents to advertise their configuration services. Matchmaking for service identifica-
tion is performed by the mediating capability that is internal to each configurator at an inner

9Note, that only the required configuration services are organized in a tree structure, which must not hold
for the involved companies in the value chain of a product.

Transforming UML Domain Description into Configuration KBs for the Semantic Web 13

node. It is done on the semantic level that is eased by multi-layered ontological commitments
(as discussed in the preceding subsection) among participants. It is assumed that suppliers
share application domain ontologies that allow them to describe the capabilities of their of-
fered products and services on the semantic level. An approach that abstracts from syntactical
specifics and proposes a reasoning on the semantic level also exists for transforming standard-
ized catalog representations in [4].

In the configuration domain an abstract service description can be interpreted as a kind of
standardized functional description of the product10. Furthermore, agents in the role of cus-
tomers (service requestors) can impose requirements on a desired product; these requirements
can be matched against the functional product description provided by the suppliers (service
providers). If one or more supplier descriptions match with the imposed requirements, the
corresponding configuration service providers can be contacted in order to finally check the
feasibility of the requirements and generate a customized product/service solution.

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean
voiceMail : Boolean
whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}
conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}
manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean
monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean
switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support
service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM
analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10
max_load_peaks : 1..1000
end_user_devices : 1..3000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}
version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures

smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean
text2Speech : Boolean
faxMail : Boolean

isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean
startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual
version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean
voiceMail : Boolean
whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}
conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}
manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean
monitor : Boolean

<<ComponentType>>

Features
basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean
switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice
version : enum{"1.0","2.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM

analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10
max_load_peaks : 1..1000
end_user_devices : 1..3000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}
version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures
smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean
text2Speech : Boolean
faxMail : Boolean
isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean
startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>
0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures
LDAPConnector : Boolean
voiceMail : Boolean

whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}
conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}
manual : Boolean

<<ComponentType>>

IPVServerPC
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean
switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM

analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10
max_load_peaks : 1..1000
end_user_devices : 1..3000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}
version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures

smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean
text2Speech : Boolean
faxMail : Boolean
isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean

startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions
version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures
LDAPConnector : Boolean
voiceMail : Boolean
whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}

conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}
manual : Boolean

<<ComponentType>>

IPVServerPC
keyboard : Boolean

monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean

switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM

analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10
max_load_peaks : 1..1000
end_user_devices : 1..3000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}
version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures

smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean
text2Speech : Boolean
faxMail : Boolean
isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean
startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions
version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

Generic ontology level

I

Intermediate ontology level

Domain
ontology level

semantic
service
descriptions

L

I

L

Configuration Web
service, including
mediating capability

Basic configuration
Web service

LI
L

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures
LDAPConnector : Boolean
voiceMail : Boolean
whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}
conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}

manual : Boolean

<<ComponentType>>

IPVServerPC
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}

ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean
switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}
max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM

analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10

max_load_peaks : 1..1000
end_user_devices : 1..3000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures

smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean

text2Speech : Boolean
faxMail : Boolean
isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean
startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions
version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

advertises
advertises

advertises

advertises

advertises

semantic
service
descriptions

Legend:

u
se

Figure 5: Web service scenario

Consequently, it is necessary to have semantic descriptions of the demanded services
that allow us to implement efficient matchmaking between supply and demand. Within these
semantic annotations, restrictions on the domain and cardinality of slots, constraints on con-
nections and structure, as well as the possible types of classes are possible. Furthermore,
offered component instances can be represented as subconcepts (e.g. read from a catalog) of
the classes of the service domain-specific configuration ontology. Additional supplier-specific
constraints can be introduced.

Therefore, markup languages are required that enable a standardized representation of
service profiles for advertisement of services as well as definitions of the process model.
In this way, the task of identifying appropriate services and the decomposition of a service

10In [13] this kind of description is denoted as a functional architecture of the configured product.

14 A. Felfernig et al.

request into several separate requests can be performed by domain independent mediators.
Due to the lack of these standards, this mediating functionality is in the current state of the
CAWICOMS Workbench performed by application logic integrated into the configuration
systems. DAML-S11 is an example for an effort underway that aims at providing such a
standardized semantic markup for Web services that builds on top of DAML+OIL. In this
way semantic capability descriptions are possible that will then allow to implement semantic
configuration Web services.

6 Summary

On the one hand, a standardized representation language is needed in order to tackle the
challenges imposed by heterogeneous representation formalisms of state-of-the-art config-
uration environments (e.g. description logic or predicate logic based configurators), on the
other hand, it is important to integrate the development and maintenance of configuration sys-
tems into industrial software development processes. We show how to support both goals by
demonstrating the applicability of the Unified Modeling Language (UML) for configuration
knowledge acquisition and by providing a set of rules for transforming UML models into
configuration knowledge bases specified by languages such as OIL or DAML+OIL which
represent the foundation for potential future description standards for Web services.

In [1] we build on the equivalence of a consistency based and a description logic based
definition of configuration. Therefore, we are capable of transforming our application domain-
independent meta-model for modeling configuration knowledge [2] into the emerging stan-
dards of the Semantic Web initiative, such as DAML+OIL, that set the stage for semantic
capability descriptions that will be exploited by the next generation of Web services.

References

[1] Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., Zanker, M.: Configuration Knowledge Repre-
sentations for Semantic Web Applications. Artificial Intelligence for Engineering, Design, Analysis and
Manufacturing (AI EDAM) (to appear) (2003)

[2] Felfernig, A., Friedrich, G., Jannach, D.: UML as domain specific language for the construction of
knowledge-based configuration systems. International Journal of Software Engineering and Knowledge
Engineering (IJSEKE) 10 (2000) 449–469

[3] Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Meyer, M., Petrone, G., Sch äfer, R.,
Zanker, M.: A Framework for Rapid Development of Advanced Web-based Configurator Applications.
In: Proceedings of the ������� European Conference on Artificial Intelligence - Prestigious Applications of
Intelligent Systems (PAIS 2002), Lyon, France (2002)

[4] Fensel, D., Ding, Y., Omelayenko, B., Schulten, E., Botquin, G., Brown, M., Flett, A.: Product Data
Integration in B2B E-Commerce. IEEE Intelligent Systems 16 (2001) 54–59

[5] Berners-Lee, T.: Weaving the Web. Harper Business (2000)

[6] Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 16 (2001) 30–37

[7] Fensel, D., VanHarmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P.: OIL: An Ontology In-
frastructure for the Semantic Web. IEEE Intelligent Systems 16 (2001) 38–45

[8] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Addison-
Wesley (1998)

11See http://www.daml.org/services for reference.

Transforming UML Domain Description into Configuration KBs for the Semantic Web 15

[9] Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-Wesley Object Technology
Series (1994)

[10] Jacobson, I., Christerson, M., Övergaard, G.: Object-oriented Software Engineering - A Use-Case Driven
Approach. Addison- Wesley (1992)

[11] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented Modeling and Design.
Prentice Hall International Editions, New Jersey, USA (1991)

[12] Chandrasekaran, B., Josephson, J., Benjamins, R.: What Are Ontologies, and Why do we Need Them?
IEEE Intelligent Systems 14 (1999) 20–26

[13] Mittal, S., Frayman, F.: Towards a Generic Model of Configuration Tasks. In: Proceedings � � ��� Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Detroit, MI (1989) 1395–1401

[14] Heinrich, M., J üngst, E.: A resource-based paradigm for the configuring of technical systems from modu-
lar components. In: Proceedings of the

�
��� IEEE Conference on AI applciations (CAIA). (1991) 257–264

[15] Stumptner, M.: An overview of knowledge-based configuration. AI Communications 10(2) (June, 1997)

[16] Soininen, T., Tiihonen, J., M ännist ö, T., Sulonen, R.: Towards a General Ontology of Configuration.
Artificial Intelligence for Engineering, Design, Analysis and Manufacturing (AI EDAM), Special Issue on
Configuration Design 12 (1998) 357–372

[17] Borgida, A.: On the relative expressive power of description logics and predicate calculus. Artificial
Intelligence 82 (1996) 353–367

[18] Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., Zanker, M.: A Joint Foundation for Configuration
in the Semantic Web. � � ��� European Conference on Artificial - Configuration Workshop (2002)

[19] Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-Based Diagnosis of Configuration
Knowledge Bases. In: Proceedings of the ��� ��� European Conference on Artificial Intelligence (ECAI),
Berlin, Germany (2000) 146–150

[20] Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-Whole Relations in Object-Centered Systems: An
Overview. Data & Knowledge Engineering 20 (1996) 347–383

[21] Sattler, U.: Description Logics for the Representation of Aggregated Objects. In: Proceedings of the ��� ���
European Conference on Artificial Intelligence (ECAI). (2000) 239–243

[22] Warmer, J., Kleppe, A.: The Object Constraint Language - Precise Modeling with UML. Addison Wesley
Object Technology Series (1999)

[23] Felfernig, A., Friedrich, G., Jannach, D.: Generating product configuration knowledge bases from pre-
cise domain extended UML models. In: Proceedings of the ��� ��� International Conference on Software
Engineering and Knowledge Engineering, Chicago, IL (2000) 284–293

[24] McIlraith, S., Son, T., Zeng, H.: Mobilizing the Semantic Web with DAML-Enabled Web Services. In:
� � ��� International Joint Conference on Artificial Intelligence (IJCAI) - Workshop on E-Business and the
Intelligent Web. (2001) 29–39

[25] Junker, U.: QuickXPlain: Conflict Detection for Arbitrary Constraint Propagation Algorithms. In: � � ���
International Joint Conference on Artificial Intelligence (IJCAI) - Workshop on Modelling and Solving
problems with constraint, Seattle, WA (2001)

