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ABSTRACT 
 
Knowledge-based product configurators support their users in tailoring configurable products according to their specific 
demands and these systems have been successfully applied in many industrial sectors over the last decades. However, within 
today's networked economy, the complex solutions offered to the customers are in many cases assembled from configurable 
sub-products themselves. Within this paper we describe a business case where due to organisational and confidentiality 
reasons a single-configurator approach is not applicable and several configurators along the supply chain must cooperate in 
finding correct product configurations and in presenting them to an online customer. We present an algorithm based on 
Constraint Satisfaction that takes the specific characteristics of the problem domain into account and compare our approach 
to other work in the field of Distributed Problem Solving.  
The implementation framework for distributed configuration which is currently developed in the EU-funded project 
CAWICOMS1 is discussed in the final sections.  
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1. INTRODUCTION 
 
Mass-customization can be defined as a business strategy where customers can tailor a product  or service according to their 
specific needs, i.e., typically the customer can decide which features and options should be included in his/her configuration 
and set parameters for the personalized variant of the product. Typically, there are several technical or organisational 
restrictions on legal combinations of the parameters and options such that intelligent support is required to check the 
consistency of user choices and compute the set of components that have to be included in the solution. Due to the 
complexity of the task, this support has to be provided by intelligent product configuration systems (configurators).  
Over the last decades, product configuration has been a successful application field of AI technology [1] and is applied both 
in simple sales-configuration scenarios as well as for the configuration of complex technical systems like telecommunication 
switches [2]. As a result, powerful tools (e.g., ILOG Configurator [3]) are available on the market, whereby the most 
successful systems rely on Constraint Satisfaction as underlying reasoning mechanism. 
However, two related aspects of nowadays' digital economy pose new requirements on the software systems that support the 
(online-) selling and the configuration processes: Complex products and services are not provisioned or manufactured by one 
single company but are assembled from components stemming from highly specialized providers which altogether constitute 
a supply chain. On the other hand, from the customer's perspective there has to be one single point of interaction, where s/he 
can rather purchase complete solutions from an integrator/reseller than individual products.  
Our application domain is from the area of telecommunication solutions for small and medium-sized companies that include 
e.g., advanced in-house telephony, voice messaging, billing services as well as end-user telephone devices. Such an advanced 
solution (which is sold by one of our project partners) consists - besides a main switch – of several additional hardware and 
software components, e.g., network routers for IP-based services, that are provided by external suppliers or other 
organizational units (Figure 1). The main challenge in that setting is that both the main switch as well as the subcomponents 
may be configurable and there are interdependencies between these components; due to confidentiality reasons or due to the 
fact that the knowledge on the configurable product itself is distributed and maintained at different sites, it is not possible to 
integrate this knowledge into one centralized knowledge base. Therefore, the configuration of the complete solution must 

                                                 
1 Customer-Adaptive Web Interface for the Configuration of products and services with Multiple Suppliers.  
The work takes place with the financial support of the IST Programme of the European Union under contract IST-1999-
10688. (See http://www.cawicoms.org) 



take place in a decentralized and distributed manner. Finally, already existing legacy configuration systems for the add-on 
products have to be integrated in order to support the joint configuration of the overall solution. 
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Figure 1 Telecommunication switch with add-ons 

In the following sections we will describe the rationale of distributed configuration using a constraint-based approach and 
provide a sound and complete algorithm for distributed computation of solutions. We will relate this approach to other 
techniques from distributed problem solving and sketch the implementation in the CAWICOMS configuration workbench. 
 
2. DISTRIBUTED PROBLEM SOLVING CHARACTERISTICS 
 

In the light of the growth of Internet-enabled communication and commerce, the field of Distributed Artificial Intelligence is 
rapidly growing and is an active research area. On the one hand multi-agent systems (MAS) with loosely coupled, 
autonomous and negotiating agents are capable of performing cooperative tasks, whereas on the other hand originally 
centralized problem solving mechanisms, e.g., Constraint Satisfaction [4], are extended to cope with the distributedness of 
the task. Altogether, both approaches require some sort of common understanding and vocabulary of the problem domain 
e.g., an ontology of the domain, as well as a protocol for interaction to solve the overall problem.  
In addition, in our application domain some special characteristics of the interaction between the involved configuration 
systems have to be taken into account: 
•  The configurators do not necessarily work in parallel like agents do, i.e., we are given a sort of a multi-tier client-server 

interaction, whereby during the configuration of the overall solution - including the main switch - the responsible 
configurators of the add-on products are only contacted on demand. For instance, the detailed configuration of some 
optional router hardware is only done if the router is required in the overall solution. 

•  Consequently, the involved configurators do not have equal priorities, because of the hierarchical order between these 
systems given by the supply chain. Such an prioritization is also required in approaches like Distributed CSPs [5], 
whereby in our application this ordering is solely determined by the supply chain and is tree-structured with respect to 
the subassemblies that build the overall solution2. In order to communicate during the search for solutions, 
neighbouring nodes in the tree of interacting configurators have to be integrated, i.e., they have to share parts of their 
product model. 

                                                 
2 Note that the supply chain itself is not necessarily tree-structured with respect to the involved companies. 
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Figure 2 Tree-structured supply chain 

•  The involved configuration systems at the leaf level of the tree may not all implement the same problem solving 
mechanisms; therefore, an intermediate layer providing minimal communication facilities as well as a mapping between 
ontological concepts has to be implemented for the participating configurators. 

 
3. BASIC PROBLEM SOLVING ALGORITHM 
 
Distributed configuration in the CAWICOMS framework [6] is based on Constraint Satisfaction (CS) techniques. This is a 
natural choice because Constraint Satisfaction has shown to be an adequate mechanism to represent and solve configuration 
problems ([2],[7]) and because of the availability of industrial-strength constraint solvers. We will now describe the basic 
distributed algorithm of our approach based on a standard CSP mechanism with a specific form of dynamic variable 
activation (DCSP, see  [8]). Note, that in the implementation we extend the basic forward-checking and backtracking 
constraint solving algorithm implemented in ILOGs3 JConfigurator library; however the approach can generally be applied to 
any solver relying on this search technique. 
The overall problem is divided into a set of extended CSPs (Dynamic Component - CSP) sharing variables, whereby the 
assignment of a value for one individual variable lies in the responsibility of exactly one DC-CSP solver. Furthermore, each 
DC-CSP is assigned a possibly empty set S of supplying DC-CSPs with which it shares some variables, whereby sharing can 
be done in two ways in a client-server like relationship:  
a) a supplying DC-CSP can "publish" some variables to the configurator at the next higher level of the supply chain; these 

variables are integrated into the DC-CSP at the next level where additional constraints may be defined. The values for 
these variables are computed by the supplier configurator and communicated to its client who checks the consistency 
with its local problem. 

b) some variables defined in a client DC-CSP may be relevant for the configurator at the next lower level of the supply 
chain, i.e, changes in these variables have to be communicated to the supplier. 

Within our approach we require that the graph defined by these dependencies between DC-CSPs form a strict tree structure, 
i.e., sharing of variables can only be done between two neighboring DC-CSPs. 

                                                 
3 see http://www.ilog.com 
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Figure 3 Sharing variables 

We will first describe the "local" extended Constraint Satisfaction Problems that a participating configurator has to solve. 
 
Definition (DC-CSP): A Dynamic-Component CSP consists of  
•  a finite set of variables V = {v1, … vn},  
•  each assigned a finite domain D = {d1, … dn}, 
•  a set C of constraints restricting the combinations of values the variables can simultaneously take, and 
•  a set S of suppliers involved in solving the DC-CSP and a distinguished activation constraint AC for each s∈  S (denoted 

as s.AC). 
Each variable v ∈  V can be marked with one s ∈  S (denoted as v.supplier) which is responsible for assigning a value for it 
and a set r ⊆   S (denoted as v.relevant) for which an assignment to v is relevant. 
V = Vinit ∪  Vdyn, whereby Vinit is the set of initially active variables and Vdyn contains the set of dynamically activated 
variables. 
An activation constraint s.AC describes the condition under which the variables of supplier s have to be activated.  
Compared with the classical Dynamic CSP, activation is not done on the level of variables but rather complete 
subassemblies can be activated. The activation of the variables of a supplier is based on a arbitrarily complex constraint4. 
The overall distributed problem consists of a strict tree of such DC-CSPs. 

Definition (DC-CSP-Tree): A DC-CSP-Tree T consists of a set of DC-CSPs forming a tree structure according to the 
supplier sets S of the involved DC-CSPs , where 
•  one DC-CSP is the root of the tree, and  
•  the set of suppliers S for leaf-nodes is Ø .  

Informally, two DC-CSPs can only share variables if they are in a predecessor-successor relationship in the DC-CSP-tree. 
Definition (Solution to a DC-CSP): A solution to a DC-CSP is an assignment of a value from its domain to every variable 
in Vinit, and to every variable v in Vdyn where v.supplier = s and s.AC is satisfied in a way that all constraints in C are 
satisfied. 
For each s ∈  S where s.AC is satisfied, the set of assignments Φ to the set SV = {v ∈  V | v.supplier = s ∨   s ∈  v.relevant } 
must be part of a solution of the DC-CSP of supplier s. 
 
The above definition states that we have to ensure that all variables of the suppliers that are active are assigned a value and 
that the assignments of values to these subsets of shared variables are consistent with the supplier's DC-CSP. In this supply-
chain setting, the goal is then to find a solution to the DC-CSP which is the root of tree. Finding such a solution involves 
searching for solutions to other DC-CSPs depending on the activation of direct successors of DC-CSPs in the tree. We will 
now describe the extended forward-checking backtracking algorithm that is implemented in an inner node of the tree based 
on the description of [4] (FC-1, p. 127). 
 

                                                 
4 Note that we assume that each subassembly in the local problem is provided by a different supplier. 



procedure SDFC-Start(Vinit, Vdyn,D,C) 
 SDFC(Vinit,{}, D,C) 
end; 
procedure SDFC(Unlabelled,Labels,D,C) 
1 S = set of suppliers, where S.AC is satisfied 
 // compute set of currently active variables which are not assigned a value 
2 Unlabelled = Unlabelled ∪  {v ∈  Vdyn | v.supplier ∈   S ∧   <v,_> ∉  Labels} 
3 if Unlabelled = {} then return Labels; 
4 select x from Unlabelled; supplier = x.supplier; 
5 if supplier ≠ {} then // found remote var; collect all variables for that supplier 
6  svars = {v ∈  Unlabelled | v.supplier = supplier}// collect set of relevant variables 
7  rvars = {v ∈  Unlabelled | supplier ∈  v.relevant} 
8  domains = current domains of svars and rvars 
9  supplier.reset(); 
10   repeat   // try to retrieve adequate solution from supplier 
11   sLables = supplier.nextSolution(svars,rvars, domains) 
12   if (sLabels ≠ NIL) then // test supplier's solution for consistency 
13    D’ = integrateSolution(svars, sLabels) 
14    if no constraint violated and no domain in D’ empty then 
15   result = SDFC(Unlabelled – {svars},  Labels + sLabels, D’) 
16     if result≠ NIL then return (result) 
17  until sLabels = NIL; 
18  return NIL  // no solution from supplier 
19 else  // local var 
20  repeat 
21   select d from Dx ; delete d from Dx; 
22   if (Labels + <x,d>) violates no constraints then 
23    rSuppliers = v.relevant  // check, if value selection ok for suppliers. 
24    if chkRel(rSuppliers,Labels + <x,d>) = ok 
25    D’ = Update(Unlabelled – {x}, D, C, <x,d>) 
26    if (no domain in D’ is empty) then 
27     result = SDFC(Unlabelled – {x}, Labels +   {x,d},D’) 
28     if result ≠ NIL then return (result); 
29  until Dx = {} 
30  return NIL // no solution found 
end 

Listing 1. Procedure SDFC 
 
The procedure SDFC starts with computing the set of currently active variables (Unlabelled) that still have to be assigned a 
value by evaluating the activation constraints. Next, it selects an unassigned variable and tests whether it is to be assigned 
locally or by a supplier configurator (5). In the latter case, we compute the sets of all variables of that supplier (6), the set of 
all variables that are relevant (7) as well as the current domains of these variables (8). Before retrieving the first or another 
solution for this set of variables (11), we call the reset procedure of the supplying configurator (9) – see Listing 3: This is 
done because we assume that a supplier can provide more than one solution given some inputs; in the loop from (10) to (17) 
we try to find a suitable solution that can be integrated into the problem at the higher level. Therefore the supplier has to 
maintain the list of solutions  (oldLabels) it provides in the current context. reset() causes this information to be discarded.  
Note, that the inner nodes in the tree of suppliers will use procedure SDFC (with the extension of storing prior solutions) to 
assign labels; however, we do not want to enforce the usage of this procedure at the leaf nodes in order to support integration 
of other configuration systems. If the supplier is able to provide labels for the variables (12), we try to integrate these into the 
problem on the higher level (13) using procedure integrateSolution in Listing 2 and propagate domain reductions – (compare 
procedure Update from [4]). 
In cases where this integration is successful we continue solving the CSP with the remaining unlabelled variables (15). Note 
that when calling a supplier configurator, all variables of the respective supplier are assigned a value at once. In addition, in 
case of backtracking, the loop from (10) to (17) will try to find another complete assignment for that supplier. 
Beginning at line (20), the standard backtracking algorithm from [4] is used with extensions in lines (23,24): When we try to 
select a value for a variable which is marked to be relevant for some suppliers, we have to check both the consistency with 
the local constraints as well as the consistency of the value with those suppliers for which this variable is relevant and which 
have already configured their subassembly. In procedure chkRel (Listing 2) we therefore collect all the variables from each 



supplier together with the relevant variables and their current domains and call procedure checkConsistency at the supplier 
configurator. 

procedure integrateSolution(svars, sLabels) 
  if (Labels ∪   sLabels) violates no constraint then 
  for each  <x,v> ∈   sLabels 
  D’ = Update(Unlabelled – svars,D, C, <x,v>) 
end 

procedureUpdate(Unlabelled,D,C,Label) 
  D’ = D; 
  /* propagate values and  reduce domains. */ 
  return (D’) 
end 

procedure chkRel (rSuppliers, Labels) 
   for each supplier in rSuppliers 
 /* collect information for supplier */ 
  svars = {v ∈  V | v. supplier = supplier} 
 rvars = {v ∈  V | supplier ∈   v.relevant)} 
  curdomains = current domains of svars and rvars 
 if ∃  x ∈   svars where <x,v> ∈  Labels then 
 /* already configured subassembly */ 
          result=supplier.checkConsistency(svars,rvars, domains) 
 if result = false then return false 
  return true /* everything ok */ 
end 

Listing 2. Auxiliary procedures  
 
The next listing contains the procedures that have to be implemented by the supplier configurators: 
 
procedure checkConsistency(svars, rvars, domains) 
   if domains not empty and assignments consistent with local constraints then 
   return true 
   else return false 
end 

procedure reset() 
 oldLabels = {} 
end 

procedure nextSolution(svars,rvars,curDomain) 
 sLabels = assign labels to svars observing local constraints and reduced domains from curDomain (using SDFC)  
       whereby labels ∉  oldLabels.  
 if no consistent assignment possible then 
  return NIL 
 oldLabels = oldLabels ∪   sLabels 
 return sLabels 
end 

 Listing 3. Procedures of supplier confiugurator 

The minimal requirements for integration of an existing configuration system at leaf nodes is therefore the implementation of 
three functions:  assigning values to variables (nextSolution), checking for consistency of assignments and domain reductions 
as well as resetting the set of previously returned solutions. 
COMPLETENESS: The basis of the sequential distributed algorithm is a standard backtracking algorithm. Therefore, the 
completeness of the algorithm is ensured by exhaustive domain exploration. Consequently, the algorithm will find a solution 
if one exists. The only modifications to the basic procedure lie in dynamic activation of variables which involves some 
additional variable ordering (all variables of one supplier are instantiated in one step). More details on the required properties 
for finding solutions to distributed configuration problems can be found in [9].  



 
4. IMPLEMENTATION FRAMEWORK 
 
One of the main goals of the CAWICOMS project is the development of a framework for the rapid development of 
distributed configuration applications. The two major issues within this area are mechanisms for distributed configuration 
problem solving and the development of tools and techniques for knowledge acquisition and knowledge integration between 
cooperating (heterogeneous) configuration systems. In the current prototype, ILOG's JConfigurator libraries are used for the 
problem solving task: Based on Constraint Satisfaction, this tool provides a more abstract layer for the configuration domain, 
i.e., instead of speaking of variables, the configuration problem is described in terms of components, properties and 
interconnections between components (see [3],[10]). We extended this preference-based search mechanism according to the 
presented algorithm in a way that a supplier is contacted in situations when during the search process it is determined that a 
component or subassembly from a supplier has to be included in the configuration. 
In order to allow integration of heterogeneous configuration systems, data exchange in the supply chain is facilitated using an 
XML-based protocol. This mechanism allows us to exchange complex data structures using XML-Schema documents and 
also serves as a generic interaction protocol for configuration problem solving over HTTP (for more details, see 
http://www.cawicoms.org).  
 
Beside adequate algorithms for distributed problem solving, one of the main problems of such systems relates to knowledge 
acquisition and integration: The participants in the supply chain must have a common understanding and vocabulary of the 
problem domain. Therefore, during the integration process, a common ontology of the domain has to be defined and the 
different product models of the suppliers have to be partially mapped. Within our framework we base knowledge acquisition 
and representation for the configuration domain on the usage of the Unified Modeling Language [7]. These graphical models 
serve as a general notation for modeling configuration problems and can be automatically compiled into the specific 
representations of existing configuration systems. 
 
Finally, one goal for the design of the implementation framework is to minimize the requirements on the configuration 
systems at least for the leaf-levels of the supply chain: Basically these systems may not even implement a constraint-based 
algorithm, since the only requirement according to the algorithm is that – given some variables and values – they can 
compute at least one solution or report failure of finding a solution. 
 
5. RELATED WORK 
 
In recent years, some major advances in applying constraint technology in distributed environments (Distributed Constraint 
Satisfaction) have been made ([5],[9],[11]). The main goal of these approaches is to search for solutions in constraint 
networks that are distributed among several agents. Similar to our approach, the motivation does not lie in a speed-up of the 
search process through parallelization but is rather justified by the fact that the knowledge itself is distributed and there are 
e.g., security and confidentiality issues to be considered. Although the underlying algorithms are described in a way that one 
agent holds exactly one variable, these approaches can theoretically be generalized to cases where each agent can solve more 
complex local CSPs. 
The main difference compared to our approach is that these algorithms work highly parallel (asynchronously), whereas our 
algorithm is – in the current version – purely synchronous. However, in the application domain of product configuration of 
telecommunication switches, parallel configuration of subassemblies is not desirable or possible because of the given 
structure of the configurable artifacts and the supply chains: it would not make sense to start configuring some subassembly 
before it is decided if this subassembly will be needed in the final product at all. Some small degree of parallelism, however, 
can be simply introduced in our algorithm, when we assume that a supplier will always find a solution given some 
requirements and that any solution of the supplier will not interfere with the configuration at the higher level.  
Although the agents in Distributed CSP approaches work independently in general, some prioritization or ordering among the 
agents is needed in order to ensure soundness and completeness (of the backtracking mechanism). While this ordering is 
predefined in [5] or dynamically computed from the constraint graph [12], this hierarchy is given through the product 
structure in our approach in a natural way. Moreover, techniques like Asynchronous Backtracking rely on no-good recording 
which is both costly in terms of memory-consumption as well as problematic in terms of confidentiality because by 
exchanging no-goods knowledge about constraints is implicitly exchanged. While these approaches solve a more 
sophisticated algorithmic problem (allowing parallel computation), our approach tackles a specific real-world problem using 
existing commercial tools.  
Future work on our approach will be to test the applicability of existing enhancements of the basic backtracking scheme (see 
e.g., [13]). More recent work [14] on intelligent backtracking takes advantage of the given structure of the constraint graph 
(bi-connected components) in order to compile partial solutions and jump back and forward during the search process more 
intelligently thus reducing the search space. These special constraint graph structures (containing loosely connected clusters) 



make this approach applicable in our domain: Typically, only a small set of all constraints are defined between variables of 
different suppliers. Therefore, improvements like "reusing" former solutions provided by suppliers when we had to backtrack 
and the inputs for the suppliers did not change (compare to [14]) will be incorporated in future versions of the algorithm. 
 
6. CONCLUSIONS 
 
Product configuration of complex products and services that are assembled from parts provisioned by several suppliers in a 
supply chain are an important issue in today's and future eCommerce environments. 
Based on the requirements of a real-world application scenario from the telecommunication domain, we have presented an 
algorithm for distributed configuration of such products in the supply chain. Relying on sharing of variables (and product 
models), the proposed algorithm is an extension of a standard forward-checking and backtracking algorithm for Constraint 
Satisfaction and was implemented by extending a commercially available tool for product configuration. We compared the 
algorithm with related work in the field and elaborated the specific demands for distributed problem solving in the domain of 
product configuration. 
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