

WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE
NETWORKS WITH MULTIPLE SUPPLIERS

A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER
Computer Science and Manufacturing Research Group
University of Klagenfurt, Austria
{felfernig, friedrich, jannach, zanker}@ifit.uni-klu.ac.at

Abstract. An Internet-based Virtual Private Network (IP-VPN) uses
the open, distributed infrastructure of the Internet to transmit data
between corporate sites. The configuration (network design) for a
specific customer network typically requires the selection of network
access lines and backbone sections that are provisioned by different
organizations in a supply chain. Moreover, when configuring such a
network, the given customer requirements (e.g., minimal bandwidth)
have to be observed.
Within this paper, we show how the (sales-)configuration process for
these networks is supported within the CAWICOMS1 framework for
distributed configuration. Beside the implementation of an adequate
distributed problem solving mechanism based on Constraint
Satisfaction with commercial tools, we address the problem of supplier
selection and knowledge integration in a Web-based environment for
eCommerce: Based on common ontological commitments on
representation concepts for the configuration domain, the suppliers can
advertise their products and services, whereby the distributed problem
solving process involves locating and executing the supplier’s
configuration service using an open XML-based protocol.
We present the architecture of the implemented prototype framework
and show the relation of our work to emerging approaches in the fields
of Distributed Problem Solving and Semantic Web Services.

1 CAWICOMS is the acronym for Customer-adaptive Web interface for the configuration of

products and services with multiple suppliers. This work was partly funded by the EU
through the IST Programme under contract IST-1999-10688. (www.cawicoms.org)

2 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

1. Introduction

In today’s networked economy, effective communication has become a
necessity, when remote users (e.g., sales people or distant offices) need easy
access to the corporate network and secure connections with the business
partners are required. Virtual Private Networks (VPN) extend the company’s
intranet and are capable of providing such services at reduced cost using the
worldwide IP network services and dedicated service provider IP backbones
(Infonetics Research, 1997). VPN infrastructures are designed to be flexible
and configurable in order to be able to cope with a rich variety of possible
costumer requirements. Therefore, the establishment of a concrete VPN
involves different steps after determination of customer requirements like
locations to be connected or specification of required bandwidth: selection
of adequate access facilities from the customer site to some entry point to
the VPN backbone, reservation of bandwidth within the backbone, as well
as configuration of routing hardware and additional services like installation
support. Note, that it is very unlikely that all these products and services
needed for the implementation of the VPN can be supplied by one single
organization but are in general made available by specialized solution
providers, e.g., Internet Service Providers, telecommunication companies or
hardware manufacturers (see Figure 1). Therefore, VPNs are typically
marketed by specialized resellers (or telecommunication companies like two
of our application partners) that integrate the services of individual suppliers
and offer complete VPN solutions to their customers.

Provider Interconnect

IP LAN

CE

PE

P

M

AG Access Gateway

PE Provider Edge Router

P Provider Core Router

M Modem Rack

G Internet Gateway

G

Internet

PI

AG

CE Customer Edge Router

PI

Figure 1. IP-VPN sketch

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS 3

Efficient sales processes for such complex and configurable products and
services require specialized support by sales-force automation tools like
product configurators with advanced problem-solving capabilities
(Fleischanderl et al, 1998; Mailharro, 1998). Consequently, product con-
figuration has become an important application area for Artificial
Intelligence-based techniques in industry and nearly all vendors of
Enterprise Resource Planning or Business-to-Business eCommerce systems
have integrated such technologies in their products (Haag, 1998; Yu and
Skovgaard, 1998). However, while there are several commercial product
configuration tools on the market, there are some specific requirements in
the described application domain that are not addressed adequately by
nowadays systems:
− Distributed configuration: due to the permanent physical restructuring of

the network infrastructure, appearing and disappearing suppliers, and
corporate privacy reasons, an approach with one single centralized
knowledge base and problem solver is not possible. Furthermore, means
must be provided in order to locate the appropriate suppliers and initiate
the provided configuration service.

− Heterogeneity: For the detailed configuration of the network, the
suppliers may employ some specialized software performing complex
computational methods for network routing or are using legacy
configuration systems. These systems must interact in order to
cooperatively solve the overall configuration task.

− Knowledge integration: Resellers and network suppliers may use
different concepts and terminology for the configuration task. Therefore
a common ontology as well as a knowledge exchange mechanism for the
application domain is needed.

Exactly these issues are addressed as part of the EU-funded CAWICOMS
project and will be discussed in the rest of the paper: First, we describe how
standard configuration technology can be extended to cope with Distributed
Problem Solving requirements and sketch the implementation framework
developed within CAWICOMS. Later on, we discuss how web-based
eCommerce between the involved suppliers is done based on information-
providing (semantic) web services (McIlraith et al, 2001).

2. Configuration of Virtual Private Networks

At a first glance, the problem of finding routes through a network that
connect several given access points and observe specific constraints (e.g., on
bandwidth) does not fit to the widely adopted component-connection
oriented definition of product configuration from (Mittal and Frayman,
1989) which is the basis for most configuration tools.

4 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

However, the sales process for VPNs comprises several stages: First, a
high-level, abstract design of the VPN is performed, i.e., for each of the
customer sites to be connected we have to select a way to connect the site to
some entry point in the IP-backbone network. Typically there are several
choices, e.g., on the type of the backbone access (which entry point, which
supplier, required protocols etc.), and there are specific constraints (e.g., on
compatibility of protocols) that have to be observed. In addition, we have to
assure that there is a route within the backbone that connects all the chosen
entry points.

The result of this first phase is a coarse network layout and a price which
is used to generate an offer for the customer. Once this offer is accepted, the
detailed configuration of the VPN can be performed, i.e., computation of
low-level technical details like IP-addresses or router configuration
parameters. Note that this step requires the usage of (existing) specialized
routing or configuration software which is for instance capable of taking
into account the current network load of some supplier network.

The following simplified example (Figure 2) will illustrate the rationale
of hierarchical configuration of VPNs. The sales engineer for VPNs
interacts with the configuration system and interactively enters the customer
requirements: The customer sites in London, Paris, and Milan have to be
connected, whereby for each connection, he can enter requirements on e.g.,
bandwidth or latency.

In a first step, the configurator determines a set of adequate access lines
from all the available lines that were advertised by the suppliers.
Furthermore, a route in the backbone network is computed that
interconnects the selected access lines. Note, that this computation is done
with the standard functionalities of our configuration software, which also
allows for optimization. Optimization can be done according to some
objective function like price or number of needed suppliers. Moreover, the
search can be guided by user preferences (e.g., according to some business
goals) (Junker, 2001).

This search process results in the high-level network marked with bold
lines in Figure 2 and determines the set of needed suppliers (BTT, TELCO
Paris). In a next step the configurators of these suppliers are contacted in
parallel, whereby information about the required components of the network
is handed over in the format defined for knowledge sharing. At the supplier
sites, details of the network layout are computed (or simply read from a
catalog), whereby this typically involves specialized, existing software
modules. Those parts of these computations that are relevant for the reseller
are transformed back to the common format (according to the ontology) and
returned to the main configurator.

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS 5

MAIN
CONFIGURATOR

User
Interaction

1. Configuration
step on abstract

level

BTT Configurator -
Proprietary software

TELCO Paris
Configurator

Proprietary software
.....

Adapter Component Adapter Component Adapter Component

2. Request detailed offer from
relevant suppliers in parallel

4. Return results

3. Compute detailed
configuration

Special
Routing
Module

Backbone Network

TELCO
Paris

BTT

LONDON

PARIS

MILAN

BTT

TELCO
ParisBTT

FRANK
FURT

VIENNA

.....

Selection
of needed
Network
segments

BTT

LUTON TELCO

AccessPoint
(Point of
presence)

AccessLine w.
given supplier

Figure 2. Example scenario

3. Knowledge sharing

In order to allow communication among several systems, the CAWICOMS
framework must be able to support these given business processes and
implement that sort of hierarchical configuration process, whereby the
integration of existing specialized software modules is a crucial factor.
Figure 3 illustrates the overall rationale of knowledge sharing in our
framework.
In a first step, the participating companies have to agree on a shared
ontology (and terminology) for the domain of IP-VPNs. While this problem
is far from being solved in the general case, it was already shown that for
specific application domains (e.g., RosettaNet for Electronic Components;
(RosettaNet, 2001) such standardization is possible. Moreover, in our
application domain the companies involved in the supply chain typically
rely on long-term business relations and negotiation phases, which alleviates
these integration steps.
The integration of the different product models is supported in the
CAWICOMS framework as follows: We use UML as a domain-independent
graphical modeling language for the design of the common product model
(Felfernig et al, 2001; Rumbaugh et al, 1998). This method has the
advantage of being in wide-spread use and comprehensible for domain

6 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

experts and is expressive enough for the configuration domain. Moreover,
this representation mechanism is independent from the proprietary notation
of specific configuration tools. Finally, the models acquired in UML
(Unified Modeling Language) can be automatically transformed both into
the representation of the configuration engine, in our case ILOGs
JConfigurator; (Ilog, 2001) as well as into other ontology description
mechanisms like DAML+OIL (Fensel et al, 2001). Figure 4 shows a
fragment of the VPN product model implemented in the current prototype:

Integrator

Internet
service
provider

Backbone
supplier 1

Backbone
supplier 2

Hardware
supplier

.....

Shared
ontology

Product
model

Integrator’s
Sales

Configurator

Internet
service

provider

Backbone
supplier 2

Backbone
supplier 2

Hardware
supplier

.....

Concrete
network

Figure 3. Shared ontology & concrete networks and catalogs

 In general, an IP-VPN consists of a set of AcccessPoints which are
connected to BackboneSections via AccessLines whereby these classes have
configurable attributes. The inner IP-backbone network is given by
interconnections between the backbone sections (ProviderInterconnect).
Furthermore, additional routing hardware etc. will be part of the generic
product model. This model represents the common ontology for all the
companies that are involved in the supply chain.

Once a common understanding of the problem domain is established
between the involved parties, knowledge about concrete offers by the
suppliers has to be exchanged and integrated. Within our framework, this is
done by explicit advertisement of specific instances or subtypes of
ontological concepts: As an example, think of a supplier that offers some
specific means of access to some backbone section. In order to do that, it
publishes the available service to the configuration system of the integrator
including some concrete values (e.g., I can provide a managed firewall
connection from London to BackboneSection b1 with guaranteed bandwidth
of 500kb/s at price X etc.). Note that this advertisement has to be done
automatically by registering the offer to an integration agent at the reseller’s
site, because of changes in the range of products product and available
resources at the supplier. These offers then form the concrete available
network (as well as other services like installation support) for the
integrator, which is depicted on the right hand side of Figure 3. As a

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS 7

knowledge representation format for these offerings, we can utilize an XML
representation for UML (instance) diagrams. The usage of the emerging
DAML+OIL standard is currently evaluated and will be included in future
implementations. Note however, that the supplier systems, which can be
fully-fledged product configurators, specialized routing software modules,
or mere product catalogs, do not have to rely on the same internal
knowledge representation or problem solving mechanism like the
configurator at the reseller’s site. The only requirement at that stage is that
the published portions of the e.g., catalog information can be transformed to
the common ontology. Typically, the computation of details on the network
at the supplier site will include additional reasoning mechanisms or data
from other sources like current network load which is not relevant for the
integrator in the first place.

AccessPoint
requiredBandwidth
latency
protocol

<<ComponentType>>

AccessLine
availableBandwidth
latency
protocol
supplier
price

<<ComponentType>>
1..1

BackboneSection
supplier
entryPoint

<<ComponentType>>

1..11..1
1..1

Provider Interconnect
bandwidth

<<ComponentType>>

from

to

CE-Router
settings..
supplier

<<ComponentType>>

IP-VPN
<<ComponentType>>

2..n2..n

0..n0..n

....

Computed by
supplier

Computed by
supplier

1..1

1..1
1..1

1..11..1

1..n

1..n

Figure 4. Product model fragment for VPNs in UML

4. Distributed Configuration

In recent years, some major advances have been made in the field of
Distributed Artificial Intelligence and in particular with respect to
techniques for Distributed Constraint Satisfaction (Yokoo, 2001) and Multi-
Agent Systems. In addition, the field is continuously pushed forward by the
rapid growth of world-wide Business-to-Business eCommerce and the need
for seamless supply-chain integration. Having discussed the problem of
knowledge integration and –exchange in the previous section, we will now

8 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

focus on the techniques and algorithms employed for distributed problem
solving in the CAWICOMS framework with respect to specific
requirements for our application domain. We have to state in advance that
the general conditions of our domain-independent framework for distributed
configuration include both (re-)use of existing technologies as well as
openness for integration of other systems2. Therefore, two quite different
application domains where chosen for evaluation, whereby one addresses
configuration of VPNs as described here and the other the more traditional
product configuration of telecommunication switches.
We base our algorithms on Constraint Satisfaction techniques, which have
shown to be adequate for solving configuration problems with regard to
expressiveness, efficient problem solving, and declarative knowledge
representation (Fleischanderl et al, 1998; Mailharro, 1998). While there are
already algorithms available for Distributed Constraint Satisfaction (Silaghi
et al, 2000; Yokoo, 2001), these approaches have some characteristics that
do not fit into our framework too well:
− they require the usage of specialized search mechanisms like

Asynchronous Backtracking or Weak-Commitment Search not provided
by commercial tools.

− in many cases, the problem is simplified to agents that only handle binary
constraints and one single local variable (although, in general, these
approaches can be extended).

− they do not take the given supply chain structure and existing business
processes into account for (configuration) problem solving.

The approach taken in the CAWICOMS framework takes these
considerations into account by allowing the integration of several con-
figurators in the supply chain, whereby – compared with other approaches –
there is some predefined, typically tree-structured order and a client-server
relation between the involved systems; at the inner nodes of the tree-
structured supply chain setting, dedicated configurators facilitate the
integration of serving configuration systems. At the top of the supply chain a
main configurator communicates with the user via an interaction module.
The main idea of integrating the involved systems relies on sharing of
variables in terms of Constraint Satisfaction and sharing of components in
the sense of (Mittal and Frayman, 1989). Configurators may share parts of
their configuration knowledge with neighboring systems; more specifically,
configurators may publish relevant parts of their knowledge to others that
are at the next higher level in the supply chain. This knowledge is then
incorporated (including the definition of inter-agent constraints) into the
product model at the next higher level and we markup those "imported"

2 For an overview of the complete project, please refer to (Ardissono et al, 2001).

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS 9

chunks of knowledge at the higher level with information, which supplier is
responsible for finding a solution for that sub-problem. During the
configuration process, search starts at the top level of the supply chain, e.g.,
using an extended standard CSP search algorithm like implemented ILOG
JConfigurator (Ilog, 2001); during the search for solutions for the local
configuration problem at one node we may encounter a sub-problem which
references to a suppliers knowledge base.
Figure 4 depicts this situation, where some of the attributes of the integrated
product model are shaded, i.e., we know that the values for these variables
have to be determined by some supplier configuration systems. In the
example, these are technical details that cannot/should not be computed by
the reseller’s configurator, because the rationale of the computation is both
complex (needs specific algorithms) and confidential to the supplier.
Obviously, it is not sufficient that each of the involved configurators finds a
solution to its local sub-problem but we have to find an overall solution that
satisfies both the user requirements as well as all the given constraints
between the involved configurators. In (Felfernig et al, 2001a), the overall
conditions for finding a globally consistent solution to such a distributed
problem are described in terms of a logical model of distributed
configuration. In general, means of conflict resolution have to be provided
in cases, where a solution that is consistent with the local configuration
knowledge is inconsistent with other partial solutions of configurators that
share some variables. As an example, in (Felfernig et al, 2001b) we describe
such a sound and complete algorithm for distributed configuration of
telecommunication switches, which is based on synchronous backtracking to
ensure global consistency. This algorithm was implemented by extending to
the standard forward-checking backtracking search procedure of ILOG
JConfigurator and takes the mostly sequential nature of the task into
account3.
In principle we can use that algorithm also for the configuration of VPNs,
according to our intention of being domain-independent with respect to our
solving techniques: we start selecting lines in the abstract network using the
configurator at the reseller’s site, request a detailization of the solution from
the supplier, integrate the results and continue with the next access line. In
case of inconsistencies that may arise during integration of the detailed
results we backtrack and search for another solution.
In the case of VPN configuration, however, we can apply a hierarchical and
parallel approach, where we compute the complete (optimal) solution at the
abstract level and then request the configuration details from all the
involved suppliers in parallel. This can be done under the assumption that

3 Note, that parallel computation (like it is in Distributed CSPs) is not a natural way of

problem solving in some domains.

10 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

the suppliers will always find a solution given the parameters for their sub-
problem and that the returned results do not violate any constraints when
integrated into the overall solution, which is a reasonable assumption
according to the requirements of our application partners.
A further requirement for the application domain can be tackled with that
approach: When requesting a solution (or an offer) from a supplier it may be
the case that the configuration process at the supplier side requires some
(longer-lasting) human interaction because e.g., some internal business
processes have to be initiated. This implies that the overall configuration
can only be completed after all the results from all involved suppliers are
returned. Consequently, after sending out the requests for solutions to the
suppliers in parallel, we have to wait until the last solution is replied before
notifying for instance the sales representative that the configuration is
completed. This requirement is addressed in our framework by supporting
long-lasting configuration sessions. In some cases, however, it may also be
sufficient to present the user the results of the high-level network for the
offering phase.

5. Implementation

The CAWICOMS framework for distributed configuration is implemented
on Sun’s JAVA-based J2EE platform that supports component-oriented
development and portability and provides basic standard functionalities for
Internet-based programming like naming services or load balancing. Java
Server Pages are used for the generation of adaptive interfaces which is part
of the project but out of the scope of this paper.

Reasoning. The core reasoning mechanism for distributed configuration
is implemented by extending the commercial domain-independent
configuration engine JConfigurator from ILOG4. Note however, that these
extensions were done without changing the core mechanisms of the
configurator engine but only by using the built-in extensibility features. This
was done in order to keep the solution as independent as possible from
specific vendors. The main requirement for a configurator to be usable in
our framework is that one can perform user-defined procedures at certain
points (e.g., when trying to solve a goal) in the search process. So whenever
the configurator (or simply a constraint solver) tries to configure a certain
component instance, one module of our framework checks whether the
component has to be configured by a supplier by querying a database. If so,
we have to look up the supplier and request a solution for the sub-problem
and integrate the results in the local solution space. Finally, we added some

4 www.ilog.com

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS11

generic interface to plug-in specialized domain-specific algorithms for
finding a route within the backbone network, in our case a variant of the
minimum spanning tree algorithm.

Knowledge Acquisition & Representation. The CAWICOMS
workbench includes a Knowledge Acquisition Workbench which must be
general enough to model a wide range of configuration problems. As already
described we made excellent experiences by using UML (and the built-in
Object Constraint Language) as a language for expressing configuration
problems on a conceptual level and we have shown that it can also be used
to model problems like in the VPN domain that do not fit the classical
scheme of component-connection oriented configuration in the first place. In
the current state of the project, we take the XMI representation of UML
(which can be generated by most commercial UML tools like Rational
Rose) and transform it automatically into an intermediate XML
representation which is then used to incorporate additional knowledge both
about potential suppliers as well as personalization information for the user-
interface generation task. Again, depending on the specific configuration
tool that is used for the application domain, we have to write adapter
components to transform the knowledge into the representation of a specific
tool (Figure 5). Future steps include the usage of DAML+OIL (Fensel et al.,
2001) as knowledge representation format.

JCONFIGURATOR

1. UML
Editor

2. XML
Representation
(automated)

public class IPVPN {
 public string customer
 property iloDomain;
 ...}

public class AccessLine {
 public int bandwidth
}

3. Configurator-
specific

representtaion

<ComponentType>
<id> AccessPoint </id>
 <Attribute>
 <name> bandwidth </name>
 <type> integer </type>
 </Attribute>
</ComponentType>
...

Configurator specific
Transformation

OCL Constraint
Translater

Personalization
knowledge
Knowledge on
Suppliers

Figure 5 Schematic knowledge acquisition process

Knowledge exchange during the configuration process. During the
distributed configuration process, the configuration agents have to exchange
information about the current state of the search process. On the one hand,
when requesting a solution for a sub-problem from a supplier, the requesting
agent has to inform the supplier both of the actual requirements as well as of
the intermediate results of the inference process (e.g., domain reductions in

12 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

CSP terminology). On the other hand, the results computed by the supplier
configurators have to be returned to their clients. Note, that in the
configuration domain these results will be complex data structures that
reflect the computed configuration including instantiated components,
attribute values (or domains) as well as connections between the individual
components. In UML terminology, we have to exchange instance models
(containing individual objects rather than classes) whereby these instance
models have to conform the structure defined in the product model, i.e., the
static structure diagram like in Figure 4. Finally, these pieces of information
also have to be communicated via the User Interface component, through
which customer requirements can be stated and results will be retrieved and
presented. From a low-level technical point of view on communication in
the Internet, there are several techniques available that allow communication
between processes over the network. The most prominent ones are CORBA,
see e.g., (Mowbray and Ruh, 1998), Microsoft’s DCOM, or Java-based
Remote Method Invocation (RMI). These approaches allow the exchange of
complex data structures and CORBA and DCOM allow for interoperability
between different programming languages. However, these techniques are
still programming approaches that offer remote computation but do not cope
with the requirements of offering semantic services, that can be located and
accessed on basis of their functionality. Moreover, these techniques are
often rather complex to use and rely on low-level TCP/IP communication
which may contravene a company’s security policy.

With the development of SOAP (Simple Object Access Protocol – see
http://www.w3c.org) these limitations are overcome by defining a XML-
based protocol for information exchange over the Internet. This protocol
aims at providing means for describing what is in a message and how to
process it, conventions for remote procedure calls as well as encoding rules
for application-defined data types. The goals therefore include the
possibility to add semantics to messages as well as a platform-independent
communication mechanism over HTTP.

The approach taken in the CAWICOMS framework relies on the same
mechanisms, whereby some specific extensions for the domain are
incorporated (See Figure 6). Communication between configurators as well
as with the user interface application is based on ILOGs WebConnector
protocol. This protocol (and toolkit) was basically designed as a generic
protocol to publish and edit complex data structures over the Web, and is
not limited to the domain of product configuration. It defines an API to
manipulate complex data structures whereby the calls to the API can be
done in a SOAP-compliant XML format and the results are again returned in
XML (i.e., XML-Schema) which can be further transformed for e.g.,
presentation to the user. ILOGs JConfigurator was integrated with the

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS13

WebConnector toolkit, which required the definition of how manipulations
to the data structures on the abstract layer (visible for the clients) are
mapped to the internal object model of the configurator. Thus, the
configurator can be accessed via the WebConnector protocol using XML
messages and all the transformations from and to the XML format are
performed automatically. In our setting of distributed configuration we use
this protocol for communication not only with the user interface but also for
communication between individual configuration systems.

JConfigurator

Internal
Object
Model

WebConnector

Supplier
Configurator 1

Supplier
Configurator 2

WebConnector WebConnector

* Defined protocol
 (message types)

* Data exchange of
 complex data structures
 (XML-Schema)

* Transaction management

Minimum requirement for
supplier systems:
Support WebConnector
protocol

Interaction with user
interface with same
protocol

Figure 6 XML-based information exchange

The built-in extensibility features of the WebConnector toolkit were used to
add product configuration–specific methods and transaction management.
Finally, a module was developed that automatically adapts the contents of
the messages according to the views on the product model of the involved
configurators: This is done because according to our notion of sharing
knowledge, the cooperating configurators have only restricted knowledge of
the product model of each other.

Another design goal that should be reached with this approach is
openness to different configuration tools or legacy systems. As depicted in
Figure 6, supplier configurators (or existing systems) do only have to
support the open WebConnector protocol in order to participate in the
distributed (network) configuration process. However, in these cases,

14 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

adapter components have to be developed that map the XML-messages onto
the internal representations of these systems.

6. Distributed configuration (of VPNs) as Semantic Web
Service

The enormous growth of the Internet and related businesses that operate on
top of the Web causes an increasing demand for attaching meta-data to the
information and services provided, once we do not solely view the Web as a
large repository for text and images (McIlraith et al., 2001). Such
annotations – that have to exceed the descriptive capabilities of simple
keywords – aim at describing the semantics of the pieces of information
available on the Web, thus giving us the possibility to perform more
sophisticated operations, i.e., high-level queries on data as well as
identification, location and execution of available services. Especially for
the case of services that are provided online (like e.g., flight reservation or
travel planning) we face the problem that these services are only accessible
via custom-made Web interfaces and the usage of the services is limited to
humans that interact with the systems. Moreover, once one has solved the
problem of finding such a service, in general, no standard way of interacting
(protocol) or a common terminology is available for these services.

However, with the rapid emergence of Business-2-Business (B2B)
eCommerce and electronic market places, the automation of the interaction
between the involved systems has become inevitable. This automation
involves both the definition of a standard ontology containing the concepts
of the business domain as well as the definition of services that are to be
provided in the domain. In recent years, a lot of XML-based (pseudo-)
standards like Commerce XML (cXML) or Common Business Library
(CBL) for B2B applications have evolved that support communication on
the basis of standardized terminologies, data exchange formats and a set of
predefined operations like e.g., order placement or other typical business
transactions. So while these standard operations are quite well understood
and supported in today's systems, i.e., the meaning of an purchase order is
basically the same for most businesses, there are no mechanisms available to
describe the semantics of non-standard and domain-specific world-altering
operations like reservation of an airline ticket like described in (McIlraith et
al., 2001). The same holds for the domain of configurable products where
several interaction steps like the definition of requirements or search for a
suitable configuration may be required. This problem is even harder in cases
where configuration of products may occur on several occasions in a supply

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS15

chain and different (configuration) services are required to compute a
satisfying solution.

The further development of the CAWICOMS framework aims at
providing distributed configuration services in supply chain settings based
on an open Semantic Web environment. While much of the work done in the
emerging Semantic Web community is still based on theoretical con-
siderations, the application domain of distributed product and service
configuration can serve as a test bed for adding intelligence to the Web:
Firstly, there is real industrial demand and business opportunities in this
domain, and secondly, the domain is sufficiently restricted and understood
in order to allow the implementation of viable solutions. However, the
transformation of the distributed configuration process into a Web Service
in the sense of (McIlraith et al., 2001) requires more than just the adoption
of emerging standards on the technical level, like the usage of SOAP-
conforming messages and DAML+OIL for knowledge representation or
techniques for service localization. It rather requires a common
understanding of

a) the configuration problem itself, i.e., the semantics of the concepts used
to describe configuration problems,

b) the services required to solve a configuration problem as well as the
semantics and consequences of service execution,

c) the means of exchanging information during the configuration process,
i.e., how do we represent complex data structures and what is the
meaning of individual pieces of information.

In recent years, both the academic (Mittal and Frayman, 1989; Peltonen et
al, 1998) and the industrial communities (Fleischanderl et al., 1998; Junker,
2001; Mailharro, 1998) involved in the product configuration domain have
made significant advances in establishing a common component-connection
oriented view of the configuration task. The theoretical foundations in the
CAWICOMS project are based on a logic theory of the (distributed)
configuration task. This allows both for precise semantics for the employed
concepts as well as independence from specific knowledge representation
and reasoning mechanisms5. In general, a configuration problem consists of
a domain description that describes the available component types, their
attributes and connection points and some specific user requirements for the
actual configuration task. The configuration result can be described by
grounded literals, whereby we define the set of predicate symbols that
describe a configuration result as CONL. (see Felfernig et al., 2000).

5 Note, that this does not require the involved configurators to rely on such a representation

mechanism.

16 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

Definition (Configuration problem): A configuration problem is described
by a triple (DD, SRS, CONL), where DD and SRS are sets of logical
sentences and CONL is a set of predicate symbols. DD represents the domain
description, SRS the system requirements specification for a configuration
problem instance. A configuration CONF is described by a set of positive
ground literals whose predicate symbols are in CONL. �

Based on this definition, we can now describe in which situation CONF is a
solution for the configuration problem:

Definition (Consistent configuration): Given a configuration problem (DD,
SRS, CONL), a configuration CONF is consistent iff DD ∪ SRS ∪ CONF is
satisfiable, �

To ensure the completeness of a configuration, additional formulae for each
symbol in CONL have to be introduced to CONF. We denote the
configuration CONF extended by these axioms with CONF .).

Definition (Valid configuration): Let (DD,SRS,CONL) be a configuration
problem. A configuration CONF is valid iff DD∪ SRS ∪ CONF is satis-
fiable. �

In (Felfernig et al., 2001a) this logical theory was extended to the case
where several configuration agents solve a distributed configuration
problem, whereby the individual agents solve sub-problems of the overall
problem and rely on local knowledge bases (domain descriptions).

Definition (Distributed configuration problem): A distributed configuration
problem for n different configuration agents is described by a triple (DDset,
SRSset, CONL) where
 DDset = {DD1 …DDn} and
 SRSset = {SRS1 … SRSn}.
Each element of DDset and of SRSset is a set of logical sentences and CONL is
a set of predicate symbols. For k ∈ {1 … n}, DDk corresponds to the domain
description of the configuration system k and SRSk specifies its system
requirements. A configuration CONF is described by a set of positive ground
literals whose predicate symbols are in CONL.�

Definition (Valid solution to a distributed configuration problem): Given a
distributed configuration problem(DDset, SRSset, CONL), a configuration
CONF is valid iff DDk ∪ SRSk ∪ CONF is satisfiable ∀ k ∈ {1 … n} �

In principle, the involved configurators can be seen as independent modules
that are able to solve their individual configuration tasks. We define a
property called defined interfacing, where all involved configuration
systems employ disjoint sets of predicate symbols except for those
contained in CONL. This way configurators can exchange (partial)
configuration results based on shared predicate symbols in CONL. Based on

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS17

this property, we can define precisely under which circumstances the
distributed solving of the configuration task generates equivalent solutions
to a centralized approach.

Theorem: Let (DD, SRS, CONL) be a configuration problem and (DDset,
SRSset, CONL) a distributed configuration problem with defined interfacing
where
 DD = � DDsetdd

dd
∈

 and SRS =� SRSsetsrs
srs

∈
.

CONF is a valid configuration for (DD, SRS, CONL) iff CONF is a valid
solution for the distributed configuration problem (DDset. SRSset, CONL). �

For the Proof and further details, see (Felfernig et al., 2001a).
Finally, when solving the distributed configuration problem, agents
exchange partial solutions to come to an overall configuration. During the
search process it could be discovered that some of the exchanged partial
solutions are in conflict with the local knowledge base and conflict
resolution among agents must be initiated.
This general definition of the (distributed) configuration task serves two
purposes in our framework. Firstly, we can extend the formalism by
introducing the extensible set of predicate symbols CONL for component-
connection oriented configuration, i.e., CONL={type/2, conn/4, val/3} for
describing component instances, connections and attribute valuations as the
common interface for exchanging (partial) configurations. Other
representations (e.g., those of commercial tools) can be mapped to that
logical representation. Secondly, if we standardize the way the components
(and their attributes) itself are to be described in DD, we can automatically
transform several other representation mechanisms for product models (like
UML) into the logical framework thus yielding precise semantics for the
employed modeling concepts (see Felfernig et al., 2000). In addition, the
logical framework does not explicitly require some specific reasoning
mechanism because it rather describes the conditions under which a
configuration instance is a valid solution for a distributed problem. The
reasoning task can e.g., be accomplished – as in the CAWICOMS
framework – by some specialized constraint solver.

Finally, we need to address the description of the actual service a con-
figurator can offer to its clients in a distributed environment, whereby two
different pieces of information have to be provided:

18 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

1. which products can be configured by the configurator?

2. what capabilities (services) does the configurator offer?

The first point is related to the advertisement of the range of products the
configurator is capable to configure. While there are approaches emerging
to define a unique world-wide catalog and categorization of products like
UNSPSC or eCl@ss in B2B eCommerce (see, e.g., Fensel et al, 2001b), up
to now there is no agreed-upon industrial standard. Moreover, most of these
classification schemes do not support products that are parametrizable
which is typical for configurable artifacts. The approach taken in
CAWICOMS, which relies on shared ontological commitments for
configuration domain specific representation concepts and advertisement of
services, was already described in Section 3. Future work in CAWICOMS
will therefore include an approach to integrate these techniques with
forthcoming classification standards. However, the way of ontology and
knowledge integration between the involved partners strongly depends on
the type of businesses: For short-term businesses of standardized (low-
priced) products (like purchasing an airline ticket, see McIlraith et al.,
2001), the usage of world-wide classification standards will be a must in
order to allow the participation of a large number of possible providers of
such products. In contrast, in highly complex domains like the provision of
Virtual Private Networks, supply chain integration will typically rely on
longer lasting business relations among the partners; therefore, we suppose
that ontologies for specific application domains or even only for the
involved partners can be established. Nonetheless, better techniques and
tools for ontology construction and integration will be needed and within the
scope of future development of CAWICOMS.

Another point targeting service description relates to the individual
capabilities of the involved configuration systems. Note, that we do not
want to restrict our framework to some specific tool or specific constraint
solving algorithms, because openness towards legacy configurators is an
important prerequisite. In the framework described in (Felfernig et al.,
2001a) we base distributed problem solving on exchanging partial
configurations and conflicts. Furthermore, we define basic communicational
capabilities a configurator has to provide in order to participate in a dis-
tributed configuration process. Note, that the very semantics of these method
calls have to be described precisely in order to allow successful cooperation.
Therefore, we rely on a logic theory of configuration, that describes the
semantics of the required services unambiguously. For a simple distributed
algorithm using a facilitating agent (Felfernig et al., 2001a) we need some
basic message types exchanged between configuration agents, e.g.:

 WEB-BASED CONFIGURATION OF VIRTUAL PRIVATE NETWORKS19

• requesting a solution: As an input, a partial configuration (con-
taining the user requirements) is given. The return value of the call
is either a configuration that is consistent with the local knowledge
base or else a notification if no solution can be found and ideally the
conflict.

• adding a conflict: In order to avoid infinite processing loops, con-
flicts are exchanged among agents and incorporated into their view
of the overall problem solving status.

Furthermore, there will be some additional methods for agent initialization
as well as additional parameters to control the search process, since – as
opposed to simple web services where the individual calls to some agent
will be independent – the distributed configuration process will involve a
series of subsequent calls to an agent (e.g., in case of backtracking) in a
configuration session.

7. Conclusions

We have presented a framework for distributed (sales) configuration and
subsequent offer generation that is currently being developed in the EU-
funded CAWICOMS project. While the general framework is designed to be
applicable to many different domains, we have focused on the configuration
of Virtual Private Networks because of its specific requirements on the
configuration process and its industrial importance.

After describing the specific properties of the application domain, we
sketched an approach for knowledge sharing among configurators in a
supply chain based on a common ontological commitments on concepts for
problem representation and advertisement of configuration capabilities.
After discussing the requirements for distributed and cooperative problem
solving in a web-based environment, we presented the current implemen-
tation of the CAWICOMS framework that is built using state-of-the art
component technology. Distributed configuration is performed by extending
an industrial-strength constraint solver for the problem solving process and
by using an open, XML-based knowledge exchange mechanism.

In the final section, the relation of the problem setting to the emerging
field of the Semantic Web is emphasized. Based on a formal definition of the
distributed configuration problem with precise semantics, we outlined the
future extension of the framework in order allow the provision of
configuration services in an open web-based environment.

20 A. FELFERNIG, G. FRIEDRICH, D. JANNACH, AND M. ZANKER

References

Ardissono, L., Felfernig A., Friedrich G., Jannach D., Schaefer R., and Zanker M.: 2001,
Intelligent Interfaces for Distributed Web-based Product and Service Configuration. Proc.
Web Intelligence (WI-2001), Maebashi, Japan, Lecture Notes in Artificial Intelligence,
Springer Verlag.

Felfernig A., Friedrich G., and Jannach D.: 2000, UML as domain specific language for the
construction of knowledge-based configuration systems, International Journal of Software
Engineering and Knowledge Engineering, Vol.10(4), pp. 449-470.

Felfernig A., Friedrich G., and Jannach D., and Zanker, M.: 2001a, Towards Distributed
Configuration. Proc. KI-2001, Joint German/Austrian Conference on AI, Vienna, Austria,
Lecture Notes in AI, Springer Verlag.

Felfernig A., Friedrich G., and Jannach D., Russ, C., and Zanker, M.: 2001b, Multi-site
product configuration of telecommunication switches, 20th IASTED Conference on Applied
Informatics, Innsbruck, Austria, 2002.

Fensel, D., Horrocks, I., van Harmelen, F., McGuinness, D.L., and Patel-Schneider, P.: 2001,
OIL: An Ontology Infrastructure for the Semantic Web, IEEE Intelligent Systems, Vol.
16(2).

Fensel D., Ding, Y., Omelayenko, B., Schulten, E., Botquin, G., Brown, M, a. Flett, A.: 2001,
Product Data Integration in B2B E-Commerce, IEEE Intelligent Systems, Vol. (16)4.

Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., and Stumptner, M.: 1998,
Configuring Large Systems Using Generative Constraint Satisfaction, IEEE Intelligent
Systems. Vol. 13(4).

Haag, A.: 1998, Sales Configuration in Business Processes, IEEE Intelligent Systems, Vol.
13(4), pp. 78−85.

Hendler, J.: Agents and the Semantic Web, IEEE Intelligent Systems, Vol. 16(2), pp. 46-53.
Infonetics Research, 1997. Virtual Private Networks White Paper, http://www.infonetics.com.
ILOG JConfigurator User Manual, 2001, ILOG S.A. France, 2001, http://www.ilog.com.
Junker, U.: 2001, Preference-programming for Configuration, Proc. IJCAI’01 - Configuration

Workshop, Seattle.
Mailharro, D.: 1998, A Classification and Constraint-based Framework for Configuration, AI

EDAM, Vol. 12(98), Cambridge University Press.
McIlraith, S., Son, T.C., and Zeng, H., 2001, Semantic Web Services, IEEE Intelligent

Systems, Vol. 16(2), pp. 46-53.
Mittal, S. and Frayman, F.: 1989, Towards a generic model of configuration tasks, Proc:

IJCAI’89, pp. 1395-1401.
Mowbray, T.J., and Ruh, W.A.: 1998, Inside CORBA, Addison-Wesley, Reading, Mass.
Peltonen, H., Männistö, T., Soininen, T., Tiihonen, J., Martio, A., and Sulonen, R.: 1998,

Concepts for Modeling Configurable Products. In Proceedings of European Conference
Product Data Technology Days 1998, Sandhurst, UK, pp. 189-196.

RosettaNet WebPages: 2001, http://www.rosettanet.org.
Rumbaugh, J., Jacobson, I., Booch, G.: 1998, The Unified Modeling Language Reference

Manual, Addison-Wesley.
Silaghi, M., Sam-Haroud, D., Faltings, B.: 2000, Asynchronous Search with Aggregations.

Proc. AAAI/IAAI 2000, Austin, TX, pp. 917-922.
Yokoo, M.: 2001, Distributed constraint satisfaction - foundations of cooperation in multi-

agent systems. Springer Verlag, Berlin, Germany.
Yu, B., and Skovgaard, H.J.: 1998, A configuration tool to increase product competitiveness,

IEEE Intelligent Systems, Vol. 13(4), pp. 34−41.

