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Abstract.  Content-based recommenders are systems that exploit detailed 
knowledge about the items in the catalog for generating adequate product 
proposals. In that context, query relaxation is one of the basic approaches for 
dealing with situations, where none of the products in the catalogue exactly 
matches the customer requirements. The major challenges when applying query 
relaxation are that the relaxation should be minimal (or optimal for the 
customer), that there exists a potentially vast search space, and that we have to 
deal with hard time constraints in interactive recommender applications.  
In this paper, we show how the task of finding adequate or customer optimal 
relaxations for a given recommendation problem can be efficiently achieved by 
applying techniques from the field of model-based diagnosis, i.e., with the help 
of extended algorithms for computing conflicts and hitting sets. In addition, we 
propose a best-effort search algorithm based on branch-and-bound for dealing 
with hard problems and also describe how an optimal relaxation can be 
immediately obtained when partial queries can be (pre-)evaluated. 
Finally, we discuss the results of an evaluation of the described techniques, 
which we made by extending an existing knowledge-based recommender 
system and which we based on different real-world problem settings. 

Introduction 

Content-based recommender systems are a special class of recommendation 
systems that operate on the basis of explicit knowledge about customer requirements, 
product characteristics, and recommendation logic (typically some sort of "filter 
rules") that determines the set of products to be proposed, when given some specific 
customer requirements. One of the main problems of such content-based systems, 
however, is that situations can easily arise, where all of the existing products are 
filtered out and no adequate proposal can be made [1] as there exists no exact match. 
"No products found" is an undesirable system response in such situations, in which 
we would appreciate a more intelligent behaviour, i.e., an explanation of the situation 
or – even better – a list of products that fulfil as many as possible of the originally 
posted requirements. In that context, approaches based on Case-Based Reasoning 
(CBR) have the advantage that they are in principle capable of also retrieving 
products that are similar to the user's query. Nonetheless, also these similarity-based 
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approaches have their limitations, for example, that the most similar product might 
not be acceptable for the user, or that the means for explaining the proposal are 
limited [9]. 

Another approach of dealing with such situations is therefore to "relax" [10] the 
problem by giving up some of the requirements (i.e., remove parts of the query) and 
then test whether there exists a product that fulfils at least the remaining requirements. 
However, finding good relaxations is not a trivial problem, because typically many 
different alternative relaxations exist, the proposed relaxations should be minimal (or 
optimal for the user), and finally, the time-frame for finding such relaxations is 
strictly limited, because recommender systems are interactive applications. In this 
paper, we show how the task of finding adequate relaxations for a given 
recommendation problem can be efficiently achieved by applying techniques from the 
field of model-based diagnosis, i.e., with the help of extended algorithms for 
computing conflicts and hitting sets. After giving an introductory example, we 
develop a general and implementation-independent model of the recommendation 
problem and show how the relaxation problem can be mapped to a model-based 
diagnosis problem such that extended algorithms for conflict-identification and hitting 
set computation can be applied. In addition, we also propose a best-effort search 
algorithm based on branch-and-bound for dealing with hard problems and finally 
discuss experimental results which were achieved by extending an existing 
recommender system with these algorithms and by using different real-world test 
cases. The paper ends with a discussion of related and future work. 

Example 

In the following, we will give a simple example from the domain of digital 
cameras for illustrating the relaxation problem and the importance of conflict-directed 
search. Let us assume our product database (PDB) of digital cameras contains the 
following entries. 

 

ID USB Firewire Price Resolution Make 
p1 true false 400 5 Canon 
p2 false true 500 5 Canon 
p3 true false 200 4 Fuji 
p4 false true 400 5 HP 

 
Our knowledge base of filter rules (FRS) comprises the following definitions. 

f1: IF the customer requires high-quality printouts of the pictures THEN 
 recommend cameras with a resolution of 5 mega-pixels. 
f2: IF the customer wants to have a cheap camera THEN 
 recommend cameras with a price smaller than 300. 
f3: IF customer needs a USB port THEN 
 recommend cameras with a USB port. 
f4: IF customer wants extended connectivity THEN 
 recommend cameras supporting Firewire. 
f5: IN ANY CASE  
 recommend cameras with a resolution higher than 3 mega-pixels. 
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Now, let us assume that a customer has the following requirements (REQ):  
USB-support, extended-connectivity, only cheap cameras, high-quality printouts. 

Given these requirements, the product database and the filter-rules, no single product 
will fulfil all the requirements. We can now try to relax (retract) some of the filter 
rules, in order to find products that fulfil as many of the customer's constraints as 
possible. A simple algorithm for finding an adequate relaxation is to compute all 
possible combinations of filters (the powerset of FRS) and check for each of these 
combinations whether products remain when these filter rules are retracted. Of course, 
such an algorithm will – in the worst case – require 2n checks, which is inadequate for 
realistic settings, where response times below one second are required. 
We therefore propose adopting a conflict-directed approach similar to Reiter's [13] 
Hitting-Set algorithm: If we look closer on the problem situation of our example, we 
see that there are two "minimal conflicts", c1 = {f1, f2} and c2 = {f3, f4}, i.e., in any 
valid problem relaxation, at least one of the filters of c1 and one of the filters of c2 has 
to be removed. We also see that f5 is not involved in any conflict, which basically 
means that we do not have to take f5 into account when searching for relaxations. 
Furthermore, based on Reiter's general theory [13], we can conclude that computing 
the set of possible, minimal relaxations (i.e., minimal diagnoses in the sense of [13]) 
can be efficiently done by computing the Hitting Set of all minimal conflicts. In our 
example problem the set of minimal relaxations thus is the set: 

{{f1, f3}, {f1, f4}, {f2, f3}, {f2, f4}}. 
 

 
Figure 1 Hitting set search tree for example problem 

Given these conflicts, finding the first valid relaxation {f1,f3} thus involves only the 
examination of three paths ({f1},{f2},{f1,f3}), i.e., three queries to the database, 
when constructing the search tree in breadth-first manner (Figure 1). 

Conflict-directed filter relaxation 

In the following, we develop a basic formalization of content- or filter-based1 
recommender problems by mapping the problem of finding adequate products in a 
catalog to a selection-query for a relational database, which has the advantage that we 
can rely on an existing, well-established formalism. In addition, knowledge-based 

                                                           
1 We view "filter-based recommenders" [1] as a special class of content-based approaches. 
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recommenders or simple product finders in fact work by dynamically constructing 
database queries for filtering the products. However, please note that the chosen 
formalisation does not necessarily imply that a database system has to be used; it is 
rather used here to clearly characterize the problem.  

Content-based recommender systems rely on the existence of a product catalog that 
contains detailed descriptions of the items to be recommended. In general, such a 
product catalog can be described as a relational database table as follows. 

Definition (Product catalog): Items in a product catalog are described by a set of 
attributes A; each attribute ai ∈ A is assigned a domain di. A product catalog P is 
then a subset of the Cartesian product of the domains di, i.e. P ⊆ d1 x … x dn. 

The set of suitable products for some given customer requirements is determined 
by a set of filter rules, which were informally sketched as "if-then" rules in the 
example section.  

Definition (Filter rule): Let C be the set of attributes for describing customer 
requirements. A filter rule f can be described by the two characteristics f.AC, and 
f.FE, where f.AC is a Boolean formula (activation constraint2) over customer 
requirements C which describes the condition, when the filter rule shall be applied. 
f.FE represents the actual filter expression on the elements of the catalog (subquery) 
and is a Boolean formula over constant values, attributes of the product catalog and 
attributes from C.  

Note that in our definition we allow the usage of variables (from C) in the filter 
expression, e.g. for modelling dynamic filter rules like "In any case, propose only 
products whose price is equal or lower to the price the customer has specified." 
The recommendation problem consists of finding a set of items from the catalog that 
fulfils all the filter expressions of the active filter rules. 

Definition (Recommendation problem): A recommendation problem RP can be 
described by a tuple <P, FRS, C, CRS>: P is a product catalog, FRS is the set of 
filter rules, C the set of attributes for describing customer requirements, and CRS a 
function over the elements of C describing the actual customer requirements.  
   The compound filter expression CFE for RP is a Boolean formula defined to be the 
conjunction of the filters whose activation condition is true, given some customer 
requirements CRS, i.e,  
  CFE  = ∧f∈FRS ,  f.AC = true  (f.FE). 
  Finding a solution to <P, FRS, C, CRS> then corresponds to performing the 
database selection σCFE  on the product catalog P. 

If none of the products in P satisfies all the compound expression CFE, we aim at 
finding a relaxation of the problem by retracting some of the filter rules, such that the 
selection results in a non-empty set of items from the catalog. 

                                                           
2 The notion of "activation constraints" is inspired by the Dynamic Constraint Satisfaction 

approach, see e.g., [9]. We introduce that concept such that we can apply the approach also 
for "knowledge-based" recommenders, like, e.g., [7] 
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Definition (Valid relaxation): Given a recommendation problem RP <P, FRS, C, 
CRS>, for which the size of the selection |σCFE (P)| = 0, a valid relaxation is a set 
RFRS ⊆ FRS such that the solution for the modified recommendation problem RP' 
<P, FRS – RFRS, C, CRS> contains at least one element. 

Lemma: Given a recommendation problem RP <P, FRS, C, CRS> and P≠∅, a valid 
relaxation will always exist, because if we set RFRS = FRS, the selection query will 
be empty and all p ∈ P are in the solution for RP.  

In general, however, we are interested in finding optimal or minimal relaxations, 
e.g., we should try to find products that fulfil as many of the customer requirements as 
possible. 

Definition (Minimal relaxation): A relaxation RFRS for RP is said to be minimal if 
there exists no RFRS' ⊂ RFRS such that RFRS' is a valid relaxation for RP. 

Computing minimal relaxations. One possible algorithm to compute possible 
relaxations is to compute the powerset of FRS and evaluate the value of the individual 
solutions. Because of the natural inefficiency of such an approach, we propose to 
apply a conflict-directed approach for finding relaxations: Given the definitions 
above, we can view the relaxation problem as a model-based diagnosis problem in the 
sense of [13] and correspondingly view the set of filter rules as the set of diagnosable 
and thus possibly faulty components of the system. 

Definition (Conflict): Given a recommendation problem RP<P, FRS, C, CRS>, a 
conflict CF is a subset of FRS such that there exists no solution for RP<P, CF, C, 
CRS>. A conflict CF is said to be minimal if there is no CF' ⊂ CF which is also a 
conflict for RP<P, FRS, C, CRS>. 
Adapted Hitting-Set algorithm (sketch): Given a recommendation problem RP<P, 
FRS, C, CRS>, construct a HS-DAG3 for the collection K of conflicts in breadth-first 
manner. Each node n of the HS-DAG is labelled with a conflict CS(n) ∈ K. Edges 
leading away from n are labelled with a filter rule f ∈ CS(n), the set of edge labels 
from the root to n is referred to as H(n). Every call to the Theorem Prover TP [13] at a 
node n returns true when there exists a solution for the adapted recommendation 
problem RP <P, FRS – H(n), C, CRS> (meaning that n can be closed) or a conflict in 
the other case. 
Computing minimal conflicts. If we are given a recommendation problem RP<P, 
FRS, C, CRS> whose result set is empty, the whole set of (active) filter rules of 
course represents a conflict. However, the size of the conflict sets directly influences 
the size of the resulting search tree, i.e., we are in general interested in finding small 
or minimal conflict sets. We therefore propose to use Junker's algorithm for 
efficiently computing such minimal conflicts [8]: QUICKXPLAIN is a recent, non-
intrusive conflict detection algorithm that – based on a divide and conquer strategy – 
decomposes the overall problem based on the concept of "preferred constraints". The 
main advantage of the approach lies in its general applicability, i.e., it is not bound to 
specific inference and dependency-tracking mechanisms in the underlying reasoning 

                                                           
3 Hitting Set Directed Acyclic Graph; according to [13], finding the set of minimal diagnoses 

corresponds to computing the Hitting Set of all minimal conflicts. 
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engine. In addition, QUICKXPLAIN also supports search for "preferred" conflicts for 
cases where not all elements of the conflict have the same priority. When applied to 
our problem, conflict detection means to identify minimal sets of active filter rules 
that have no products in common, i.e., which will lead to an empty result set. 
Best-effort search for customer-optimal relaxations. When using Reiter's 
algorithm, we search for diagnoses in breadth-first manner, implicitly assuming that 
smaller diagnoses (relaxations) are preferable. In recommender applications, however, 
not all of the filter rules may have equal importance for the customer. On the one 
hand the domain engineer might annotate the rules in advance with some priority of 
application based on his/her expert knowledge; on the other hand we could allow the 
user to express his/her preferences on the importance of rules or derive it from other 
(external) data sources like from the behaviour of other users.  

Definition (Optimal relaxation): Given a recommendation problem RP<P, FRS, C, 
CRS>, let RC be a function over the elements of FRS describing the costs of 
retracting a single filter f ∈ FRS. Let COSTS be a function describing the costs of a 
relaxation as an integer number, which takes the set of retracted filters, the individual 
costs RC, and eventually also customer characteristics4 into account. A relaxation 
RFRS for RP is said to be optimal if there exists no other set RFRS' ⊆  FRS such that 
 COSTS(RFRS', CRS, RC) < COSTS(RFRS, CRS, RC).  
For ensuring monotonicity of the COSTS function, COSTS(RFRS', CRS, RC) <  
COSTS(RFRS, CRS, RC), has to hold in cases where RFRS' ⊂ RFRS 

We introduce this general cost function, as minimal relaxations may not always be 
optimal, i.e., it might be better to relax two rules with lower importance than to relax 
one rule which is highly important for the customer. Applying breadth-first search is 
thus not reasonable in that context because a potentially many different conflicts have 
to be computed for finding the first solution; exhaustive search is only possible for 
very small problems. We therefore propose to explore the search space in depth-first 
manner, such that a first (non-optimal) relaxation can be found in very short time. 
After having found this initial solution, we proceed by applying a branch-and-bound 
search in which we prune those search paths that will definitely not lead to a better 
solution. We also propose to implement a time-constrained best-effort variant, where 
we define a maximum time (e.g., one second) for optimization. Of course, optimality 
of the result cannot be guaranteed then in general, but our experiments suggest that 
even rather complex problems can be solved in very short time or good relaxations 
can be found, e.g., when using a domain-independent, priority-based search heuristic. 

Depth-first algorithm (sketch): Given a recommendation problem RP<P, FRS, C, 
CRS>, construct the HS-DAG for the collection K of minimal5 conflicts in depth-first 
manner. Label edges and nodes similar to the algorithm described previously. As a 
general search heuristic, sort the elements of each conflict according to their weight in 
ascending order. Remember the value of the optimization function for the first valid 
relaxation as the currently best solution. When further exploring the search tree, 

                                                           
4 The cost function could, for instance, take personal preferences of the user into account. 
5 Note that we rely on minimal conflicts that are computed with QuickXPlain, which also 

means that tree pruning [13] is not required. 
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always remember the value of the currently best solutions and prune those paths that 
will definitely result in solutions which are worse than the optimum found so far. In 
addition – since the relaxations that are found in the depth-first approach may be non-
minimal – we need to minimize each relaxation that is found before proceeding with 
the search process. This minimization operation, however, requires at most n-1 
additional consistency checks for a relaxation of size n, since we can check each of 
the elements of the actual relaxation individually. 

Implementation and discussion 

In order to evaluate our approach, we have implemented the proposed algorithms in 
the knowledge-based Advisor Suite [7] system. Our particular aim was to demonstrate 
that the diagnosis approach is suitable given the hard real-time requirements of 
interactive recommender applications: in general, given a set of n diagnosable 
components, i.e., filter rules, the computational complexity of finding diagnoses of 
cardinality k is O(nk). From various real-world instantiations of the Advisor Suite 
system we know that a typical knowledge base contains about 40-70 filter rules; we 
also claim that the size of allowed relaxations should be limited to a maximum of five 
to seven filter rules for pragmatic reasons. From practical settings we know that users 
are not satisfied with proposals where for instance half of the rules (corresponding to 
the original wishes) could not be applied. The most costly and frequent operation 
during the construction of the HS-DAG and the computation of conflicts is to 
determine for a given set of filter rules whether these rules, if applied together, lead to 
an empty result set. For increased performance, we have chosen to perform a pre-
processing step in which we evaluate the active filter rules individually, i.e., for each 
of the filter rules, we set up the list of products that fulfil the filter expression. For all 
of the filter rules that contain no variables in the filter expression, we can pre-compute 
the set of products that fulfil the expression. For all other rules, we have to set up the 
product list at run-time for each customer session. The results of these filters can be 
represented as bit-sets in compact way, i.e., for each product in the catalog we set a 
flag, if it is in the result or not (Figure 2). The computation of the conjunction of the 
filter rules can then be efficiently done by applying a "bitwise and" on these bit-sets. 
If the resulting bit-set contains no entries, we know that the result set is empty and we 
have to relax some of the filters. Note that this sort of representation is not mandatory 
for applying our approach but was actually implemented in the Java-based Advisor 
Suite system. Our measurements of the running times (see below) also include 
numbers for an implementation variant that does not rely on these pre-processing step 
but rather on individual database queries (HS/DBQ). 
       A particular side-effect when using the pre-processing technique is that we can 
directly determine the optimal or minimal relaxation without even constructing the 
HS-DAG: If we remember for each product the set of filter rules that had a "0" for the 
product and the sum of the weights of these rules (see Figure 2) we only have to 
determine that product in the (empty) result set which minimizes the given 
optimization function. As such, the search for the best valid relaxation can be done by 
only evaluating each filter rule once, computing the conjunction of the bit-sets, and 
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finding the minimum by scanning the result set (compare also the results of [6] for 
finding the first maximal succeeding subquery). We could therefore compute the 
optimal relaxation for all test cases in a few milliseconds (see column BSA in the 
table below). Still, this is only possible due to a very specific implementation in our 
system and is not as general as the described conflict-directed approach. 

  
Figure 2 Bit-set representation of filter rules 

In the different test examples we varied the relaxation goal (cardinality 
only/optimization), the number of (active) filter rules, the number of products and 
conflicts, the average size of the conflicts, and the cardinality of the minimal 
diagnoses6. Our test databases contained up to 2.000 different products – the ramp up 
time for constructing the needed data structures is about 2 seconds on a Pentium IV 
desktop PC, which is not problematic since this has to be done only once during 
server start-up. The additional memory requirement for the data structures alone is 
nbProducts * nbFilterRules bits and thus strictly limited. The following tables show 
the average running times for a rather hard test case for one of our real-world 
knowledge bases that contains 70 filter rules. In the test cases, 25 of them were active 
for some given customer requirements. The number of and size of the conflicts was 
adequately increased with the size of the minimal relaxation that was to be found. The 
numbers in the table correspond to average running times in milliseconds for finding 
the first/best relaxation.  

C HS/BS HS/DBQ BSA #N #TP  C HS/BS HS/DBQ #N #TP 

1 12 177.1 10 1 15  1 12 164.5 1 15 
3 14 345.6 10 4 22  3 15 338.5 6 22 
5 14 416.6 10 23 75  5 16 414.6 19 75 
7 18 472.9 10 95 99  7 16 465.8 62 99 
10 67 861.2 10 1346 228  10 35 697.1 471 187 

 
Table 1: Breadth-first search for 
first diagnosis   

Table2:  Depth-first / Branch & bound 
for optimal diagnosis 

 C: Cardinality of smallest relaxation  
 HS/BS: HS-DAG construction, usage of bit-set representation 
 HS/DBQ: HS-DAG construction, usage of dynamically constructed queries  
 BSA: Analysis of bit-sets only (no HS-DAG)  
 #N: Number of search tree nodes  
 #TP: "Theorem prover" calls: DB-queries / Bit-set operations   

                                                           
6 Note that a relaxation of size 10 is already rather unrealistic and of little help for the user. 
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In that test case, all of the problems could be solved within the targeted time-frame 
of one second, even when using database queries instead of the bit-set representation. 
If no pre-computation of filter results was done, e.g., because all filter rules contain 
variables, the search process needed about 40 additional milliseconds in our test 
cases. The performance of the depth-first search in that test case is comparable (or 
slightly better) than the breadth-first approach, i.e., a good solution was found early 
and a lot of pruning could be done, i.e., fewer nodes had to be expanded. In general 
this will vary, depending on the number of conflicts and diagnoses, the search 
heuristic for the depth-first search and the particular characteristics of the importance 
factors and so forth. An implementation variant based on A* produced results 
comparable to those of the depth-first search. 

Related work and Conclusions 

Related work. Query-relaxation for content-based recommenders was recently 
addressed in [9] and [10]. In this work, McSherry proposed an approach in which the 
user is incrementally presented individual explanations for the retrieval failure and the 
problem is iteratively solved. Such system behaviour can in principle also be 
implemented based on our approach if we compute a minimal conflict in each step 
and let the user decide how to proceed. Nonetheless, there might be many interactions 
required (e.g., if we need to relax many filters), the system will not be able to predict 
in general if the relaxation of the next sub-query will succeed, and no overall 
optimum can be guaranteed. In addition, the number of queries required for 
computing all conflicts before entering the recovery process may be too large for 
interactive applications in their approach. An comparable iterative repair approach is 
also implemented in our surrounding framework [7], where the user can interactively 
change the priorities of the rules according to his/her preferences. 

The identification of the reasons for a failure of a query is also an issue in the area 
of Cooperative Query Answering. In [6], Godfrey shows complexity results for 
finding Minimal Failing Sub-queries MSF (correspond to conflicts in our approach) 
and maximal succeeding queries XSS (corresponding to our relaxed query) and 
proposes algorithms for finding one and enumerating all MSF/XSS. Our algorithms 
can be seen as alternatives to these basic mechanisms which are in addition capable of 
exploiting priorities for steering the (best-effort) search process and also incorporate 
recently developed algorithms for fast detection of minimal conflicts [8]. 

Incremental relaxation of overconstrained problems is also a well-known technique 
in the Constraint Satisfaction world, see e.g., [12] or [14], where soft constraints and 
Partial Constraint Satisfaction were introduced. These approaches, however, were 
designed to work in the context of some specific reasoning technique and cannot be 
easily applied to other problem solving or inference algorithms.  

From the technological perspective, model-based diagnosis techniques for 
detecting problems in Software systems have been introduced e.g., in [2] or [4]. We 
see our approach in the general tradition of that work. Our future work includes the 
extension of the approach towards the computation of "repair alternatives": Instead of 
computing only possible relaxations, the goal will be to find a minimal set of changes 
in the user requirements such that a solution can be found. Finally, we also aim at 



10      Dietmar Jannach and Johannes Liegl 

evaluating approaches that exploit abstraction hierarchies within the knowledge base 
(see e.g., [3]), an approach that was also suggested as a tool for tackling the relaxation 
problem for recommenders in [11]. 

Conclusions. In this paper, we have shown how conflict-directed search can be 
used to significantly enhance the search for minimal relaxations of unsuccessful 
queries in filter-based recommender systems. The evaluation of the approach in a 
knowledge-based advisory framework has shown that even hard problem instances 
can be solved within the short time frames that are required in interactive 
recommender applications. Furthermore it was demonstrated how the usage of 
specialized data structures and pre-processing techniques can further reduce the 
number of required database queries and thus shorten response times. In our current 
work, we aim at generalizing this pre-processing approach and also extending it with 
a mechanism with which we can also compute relaxations (based on the bit-set 
matrix) that lead at least to n different products, which shall give the end user more 
choices when searching and comparing different items in a proposal. 
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