
Conflict-directed relaxation of constraints in
content-based recommender systems

Dietmar Jannach and Johannes Liegl

Institute for Business Informatics & Application Systems
University Klagenfurt, A-9020 Klagenfurt, Austria

dietmar.jannach@ifit.uni-klu.ac.at, johannes.liegl@edu.uni-klu.ac.at

Abstract. Content-based recommenders are systems that exploit detailed
knowledge about the items in the catalog for generating adequate product
proposals. In that context, query relaxation is one of the basic approaches for
dealing with situations, where none of the products in the catalogue exactly
matches the customer requirements. The major challenges when applying query
relaxation are that the relaxation should be minimal (or optimal for the
customer), that there exists a potentially vast search space, and that we have to
deal with hard time constraints in interactive recommender applications.
In this paper, we show how the task of finding adequate or customer optimal
relaxations for a given recommendation problem can be efficiently achieved by
applying techniques from the field of model-based diagnosis, i.e., with the help
of extended algorithms for computing conflicts and hitting sets. In addition, we
propose a best-effort search algorithm based on branch-and-bound for dealing
with hard problems and also describe how an optimal relaxation can be
immediately obtained when partial queries can be (pre-)evaluated.
Finally, we discuss the results of an evaluation of the described techniques,
which we made by extending an existing knowledge-based recommender
system and which we based on different real-world problem settings.

Introduction

Content-based recommender systems are a special class of recommendation
systems that operate on the basis of explicit knowledge about customer requirements,
product characteristics, and recommendation logic (typically some sort of "filter
rules") that determines the set of products to be proposed, when given some specific
customer requirements. One of the main problems of such content-based systems,
however, is that situations can easily arise, where all of the existing products are
filtered out and no adequate proposal can be made [1] as there exists no exact match.
"No products found" is an undesirable system response in such situations, in which
we would appreciate a more intelligent behaviour, i.e., an explanation of the situation
or – even better – a list of products that fulfil as many as possible of the originally
posted requirements. In that context, approaches based on Case-Based Reasoning
(CBR) have the advantage that they are in principle capable of also retrieving
products that are similar to the user's query. Nonetheless, also these similarity-based

2 Dietmar Jannach and Johannes Liegl

approaches have their limitations, for example, that the most similar product might
not be acceptable for the user, or that the means for explaining the proposal are
limited [9].

Another approach of dealing with such situations is therefore to "relax" [10] the
problem by giving up some of the requirements (i.e., remove parts of the query) and
then test whether there exists a product that fulfils at least the remaining requirements.
However, finding good relaxations is not a trivial problem, because typically many
different alternative relaxations exist, the proposed relaxations should be minimal (or
optimal for the user), and finally, the time-frame for finding such relaxations is
strictly limited, because recommender systems are interactive applications. In this
paper, we show how the task of finding adequate relaxations for a given
recommendation problem can be efficiently achieved by applying techniques from the
field of model-based diagnosis, i.e., with the help of extended algorithms for
computing conflicts and hitting sets. After giving an introductory example, we
develop a general and implementation-independent model of the recommendation
problem and show how the relaxation problem can be mapped to a model-based
diagnosis problem such that extended algorithms for conflict-identification and hitting
set computation can be applied. In addition, we also propose a best-effort search
algorithm based on branch-and-bound for dealing with hard problems and finally
discuss experimental results which were achieved by extending an existing
recommender system with these algorithms and by using different real-world test
cases. The paper ends with a discussion of related and future work.

Example

In the following, we will give a simple example from the domain of digital
cameras for illustrating the relaxation problem and the importance of conflict-directed
search. Let us assume our product database (PDB) of digital cameras contains the
following entries.

ID USB Firewire Price Resolution Make
p1 true false 400 5 Canon
p2 false true 500 5 Canon
p3 true false 200 4 Fuji
p4 false true 400 5 HP

Our knowledge base of filter rules (FRS) comprises the following definitions.

f1: IF the customer requires high-quality printouts of the pictures THEN
 recommend cameras with a resolution of 5 mega-pixels.
f2: IF the customer wants to have a cheap camera THEN
 recommend cameras with a price smaller than 300.
f3: IF customer needs a USB port THEN
 recommend cameras with a USB port.
f4: IF customer wants extended connectivity THEN
 recommend cameras supporting Firewire.
f5: IN ANY CASE
 recommend cameras with a resolution higher than 3 mega-pixels.

Conflict-directed filter relaxation 3

Now, let us assume that a customer has the following requirements (REQ):
USB-support, extended-connectivity, only cheap cameras, high-quality printouts.

Given these requirements, the product database and the filter-rules, no single product
will fulfil all the requirements. We can now try to relax (retract) some of the filter
rules, in order to find products that fulfil as many of the customer's constraints as
possible. A simple algorithm for finding an adequate relaxation is to compute all
possible combinations of filters (the powerset of FRS) and check for each of these
combinations whether products remain when these filter rules are retracted. Of course,
such an algorithm will – in the worst case – require 2n checks, which is inadequate for
realistic settings, where response times below one second are required.
We therefore propose adopting a conflict-directed approach similar to Reiter's [13]
Hitting-Set algorithm: If we look closer on the problem situation of our example, we
see that there are two "minimal conflicts", c1 = {f1, f2} and c2 = {f3, f4}, i.e., in any
valid problem relaxation, at least one of the filters of c1 and one of the filters of c2 has
to be removed. We also see that f5 is not involved in any conflict, which basically
means that we do not have to take f5 into account when searching for relaxations.
Furthermore, based on Reiter's general theory [13], we can conclude that computing
the set of possible, minimal relaxations (i.e., minimal diagnoses in the sense of [13])
can be efficiently done by computing the Hitting Set of all minimal conflicts. In our
example problem the set of minimal relaxations thus is the set:

{{f1, f3}, {f1, f4}, {f2, f3}, {f2, f4}}.

Figure 1 Hitting set search tree for example problem

Given these conflicts, finding the first valid relaxation {f1,f3} thus involves only the
examination of three paths ({f1},{f2},{f1,f3}), i.e., three queries to the database,
when constructing the search tree in breadth-first manner (Figure 1).

Conflict-directed filter relaxation

In the following, we develop a basic formalization of content- or filter-based1
recommender problems by mapping the problem of finding adequate products in a
catalog to a selection-query for a relational database, which has the advantage that we
can rely on an existing, well-established formalism. In addition, knowledge-based

1 We view "filter-based recommenders" [1] as a special class of content-based approaches.

4 Dietmar Jannach and Johannes Liegl

recommenders or simple product finders in fact work by dynamically constructing
database queries for filtering the products. However, please note that the chosen
formalisation does not necessarily imply that a database system has to be used; it is
rather used here to clearly characterize the problem.

Content-based recommender systems rely on the existence of a product catalog that
contains detailed descriptions of the items to be recommended. In general, such a
product catalog can be described as a relational database table as follows.

Definition (Product catalog): Items in a product catalog are described by a set of
attributes A; each attribute ai ∈ A is assigned a domain di. A product catalog P is
then a subset of the Cartesian product of the domains di, i.e. P ⊆ d1 x … x dn.

The set of suitable products for some given customer requirements is determined
by a set of filter rules, which were informally sketched as "if-then" rules in the
example section.

Definition (Filter rule): Let C be the set of attributes for describing customer
requirements. A filter rule f can be described by the two characteristics f.AC, and
f.FE, where f.AC is a Boolean formula (activation constraint2) over customer
requirements C which describes the condition, when the filter rule shall be applied.
f.FE represents the actual filter expression on the elements of the catalog (subquery)
and is a Boolean formula over constant values, attributes of the product catalog and
attributes from C.

Note that in our definition we allow the usage of variables (from C) in the filter
expression, e.g. for modelling dynamic filter rules like "In any case, propose only
products whose price is equal or lower to the price the customer has specified."
The recommendation problem consists of finding a set of items from the catalog that
fulfils all the filter expressions of the active filter rules.

Definition (Recommendation problem): A recommendation problem RP can be
described by a tuple <P, FRS, C, CRS>: P is a product catalog, FRS is the set of
filter rules, C the set of attributes for describing customer requirements, and CRS a
function over the elements of C describing the actual customer requirements.
 The compound filter expression CFE for RP is a Boolean formula defined to be the
conjunction of the filters whose activation condition is true, given some customer
requirements CRS, i.e,
 CFE = ∧f∈FRS , f.AC = true (f.FE).
 Finding a solution to <P, FRS, C, CRS> then corresponds to performing the
database selection σCFE on the product catalog P.

If none of the products in P satisfies all the compound expression CFE, we aim at
finding a relaxation of the problem by retracting some of the filter rules, such that the
selection results in a non-empty set of items from the catalog.

2 The notion of "activation constraints" is inspired by the Dynamic Constraint Satisfaction

approach, see e.g., [9]. We introduce that concept such that we can apply the approach also
for "knowledge-based" recommenders, like, e.g., [7]

Conflict-directed filter relaxation 5

Definition (Valid relaxation): Given a recommendation problem RP <P, FRS, C,
CRS>, for which the size of the selection |σCFE (P)| = 0, a valid relaxation is a set
RFRS ⊆ FRS such that the solution for the modified recommendation problem RP'
<P, FRS – RFRS, C, CRS> contains at least one element.

Lemma: Given a recommendation problem RP <P, FRS, C, CRS> and P≠∅, a valid
relaxation will always exist, because if we set RFRS = FRS, the selection query will
be empty and all p ∈ P are in the solution for RP.

In general, however, we are interested in finding optimal or minimal relaxations,
e.g., we should try to find products that fulfil as many of the customer requirements as
possible.

Definition (Minimal relaxation): A relaxation RFRS for RP is said to be minimal if
there exists no RFRS' ⊂ RFRS such that RFRS' is a valid relaxation for RP.

Computing minimal relaxations. One possible algorithm to compute possible
relaxations is to compute the powerset of FRS and evaluate the value of the individual
solutions. Because of the natural inefficiency of such an approach, we propose to
apply a conflict-directed approach for finding relaxations: Given the definitions
above, we can view the relaxation problem as a model-based diagnosis problem in the
sense of [13] and correspondingly view the set of filter rules as the set of diagnosable
and thus possibly faulty components of the system.

Definition (Conflict): Given a recommendation problem RP<P, FRS, C, CRS>, a
conflict CF is a subset of FRS such that there exists no solution for RP<P, CF, C,
CRS>. A conflict CF is said to be minimal if there is no CF' ⊂ CF which is also a
conflict for RP<P, FRS, C, CRS>.
Adapted Hitting-Set algorithm (sketch): Given a recommendation problem RP<P,
FRS, C, CRS>, construct a HS-DAG3 for the collection K of conflicts in breadth-first
manner. Each node n of the HS-DAG is labelled with a conflict CS(n) ∈ K. Edges
leading away from n are labelled with a filter rule f ∈ CS(n), the set of edge labels
from the root to n is referred to as H(n). Every call to the Theorem Prover TP [13] at a
node n returns true when there exists a solution for the adapted recommendation
problem RP <P, FRS – H(n), C, CRS> (meaning that n can be closed) or a conflict in
the other case.
Computing minimal conflicts. If we are given a recommendation problem RP<P,
FRS, C, CRS> whose result set is empty, the whole set of (active) filter rules of
course represents a conflict. However, the size of the conflict sets directly influences
the size of the resulting search tree, i.e., we are in general interested in finding small
or minimal conflict sets. We therefore propose to use Junker's algorithm for
efficiently computing such minimal conflicts [8]: QUICKXPLAIN is a recent, non-
intrusive conflict detection algorithm that – based on a divide and conquer strategy –
decomposes the overall problem based on the concept of "preferred constraints". The
main advantage of the approach lies in its general applicability, i.e., it is not bound to
specific inference and dependency-tracking mechanisms in the underlying reasoning

3 Hitting Set Directed Acyclic Graph; according to [13], finding the set of minimal diagnoses

corresponds to computing the Hitting Set of all minimal conflicts.

6 Dietmar Jannach and Johannes Liegl

engine. In addition, QUICKXPLAIN also supports search for "preferred" conflicts for
cases where not all elements of the conflict have the same priority. When applied to
our problem, conflict detection means to identify minimal sets of active filter rules
that have no products in common, i.e., which will lead to an empty result set.
Best-effort search for customer-optimal relaxations. When using Reiter's
algorithm, we search for diagnoses in breadth-first manner, implicitly assuming that
smaller diagnoses (relaxations) are preferable. In recommender applications, however,
not all of the filter rules may have equal importance for the customer. On the one
hand the domain engineer might annotate the rules in advance with some priority of
application based on his/her expert knowledge; on the other hand we could allow the
user to express his/her preferences on the importance of rules or derive it from other
(external) data sources like from the behaviour of other users.

Definition (Optimal relaxation): Given a recommendation problem RP<P, FRS, C,
CRS>, let RC be a function over the elements of FRS describing the costs of
retracting a single filter f ∈ FRS. Let COSTS be a function describing the costs of a
relaxation as an integer number, which takes the set of retracted filters, the individual
costs RC, and eventually also customer characteristics4 into account. A relaxation
RFRS for RP is said to be optimal if there exists no other set RFRS' ⊆ FRS such that
 COSTS(RFRS', CRS, RC) < COSTS(RFRS, CRS, RC).
For ensuring monotonicity of the COSTS function, COSTS(RFRS', CRS, RC) <
COSTS(RFRS, CRS, RC), has to hold in cases where RFRS' ⊂ RFRS

We introduce this general cost function, as minimal relaxations may not always be
optimal, i.e., it might be better to relax two rules with lower importance than to relax
one rule which is highly important for the customer. Applying breadth-first search is
thus not reasonable in that context because a potentially many different conflicts have
to be computed for finding the first solution; exhaustive search is only possible for
very small problems. We therefore propose to explore the search space in depth-first
manner, such that a first (non-optimal) relaxation can be found in very short time.
After having found this initial solution, we proceed by applying a branch-and-bound
search in which we prune those search paths that will definitely not lead to a better
solution. We also propose to implement a time-constrained best-effort variant, where
we define a maximum time (e.g., one second) for optimization. Of course, optimality
of the result cannot be guaranteed then in general, but our experiments suggest that
even rather complex problems can be solved in very short time or good relaxations
can be found, e.g., when using a domain-independent, priority-based search heuristic.

Depth-first algorithm (sketch): Given a recommendation problem RP<P, FRS, C,
CRS>, construct the HS-DAG for the collection K of minimal5 conflicts in depth-first
manner. Label edges and nodes similar to the algorithm described previously. As a
general search heuristic, sort the elements of each conflict according to their weight in
ascending order. Remember the value of the optimization function for the first valid
relaxation as the currently best solution. When further exploring the search tree,

4 The cost function could, for instance, take personal preferences of the user into account.
5 Note that we rely on minimal conflicts that are computed with QuickXPlain, which also

means that tree pruning [13] is not required.

Conflict-directed filter relaxation 7

always remember the value of the currently best solutions and prune those paths that
will definitely result in solutions which are worse than the optimum found so far. In
addition – since the relaxations that are found in the depth-first approach may be non-
minimal – we need to minimize each relaxation that is found before proceeding with
the search process. This minimization operation, however, requires at most n-1
additional consistency checks for a relaxation of size n, since we can check each of
the elements of the actual relaxation individually.

Implementation and discussion

In order to evaluate our approach, we have implemented the proposed algorithms in
the knowledge-based Advisor Suite [7] system. Our particular aim was to demonstrate
that the diagnosis approach is suitable given the hard real-time requirements of
interactive recommender applications: in general, given a set of n diagnosable
components, i.e., filter rules, the computational complexity of finding diagnoses of
cardinality k is O(nk). From various real-world instantiations of the Advisor Suite
system we know that a typical knowledge base contains about 40-70 filter rules; we
also claim that the size of allowed relaxations should be limited to a maximum of five
to seven filter rules for pragmatic reasons. From practical settings we know that users
are not satisfied with proposals where for instance half of the rules (corresponding to
the original wishes) could not be applied. The most costly and frequent operation
during the construction of the HS-DAG and the computation of conflicts is to
determine for a given set of filter rules whether these rules, if applied together, lead to
an empty result set. For increased performance, we have chosen to perform a pre-
processing step in which we evaluate the active filter rules individually, i.e., for each
of the filter rules, we set up the list of products that fulfil the filter expression. For all
of the filter rules that contain no variables in the filter expression, we can pre-compute
the set of products that fulfil the expression. For all other rules, we have to set up the
product list at run-time for each customer session. The results of these filters can be
represented as bit-sets in compact way, i.e., for each product in the catalog we set a
flag, if it is in the result or not (Figure 2). The computation of the conjunction of the
filter rules can then be efficiently done by applying a "bitwise and" on these bit-sets.
If the resulting bit-set contains no entries, we know that the result set is empty and we
have to relax some of the filters. Note that this sort of representation is not mandatory
for applying our approach but was actually implemented in the Java-based Advisor
Suite system. Our measurements of the running times (see below) also include
numbers for an implementation variant that does not rely on these pre-processing step
but rather on individual database queries (HS/DBQ).
 A particular side-effect when using the pre-processing technique is that we can
directly determine the optimal or minimal relaxation without even constructing the
HS-DAG: If we remember for each product the set of filter rules that had a "0" for the
product and the sum of the weights of these rules (see Figure 2) we only have to
determine that product in the (empty) result set which minimizes the given
optimization function. As such, the search for the best valid relaxation can be done by
only evaluating each filter rule once, computing the conjunction of the bit-sets, and

8 Dietmar Jannach and Johannes Liegl

finding the minimum by scanning the result set (compare also the results of [6] for
finding the first maximal succeeding subquery). We could therefore compute the
optimal relaxation for all test cases in a few milliseconds (see column BSA in the
table below). Still, this is only possible due to a very specific implementation in our
system and is not as general as the described conflict-directed approach.

Figure 2 Bit-set representation of filter rules

In the different test examples we varied the relaxation goal (cardinality
only/optimization), the number of (active) filter rules, the number of products and
conflicts, the average size of the conflicts, and the cardinality of the minimal
diagnoses6. Our test databases contained up to 2.000 different products – the ramp up
time for constructing the needed data structures is about 2 seconds on a Pentium IV
desktop PC, which is not problematic since this has to be done only once during
server start-up. The additional memory requirement for the data structures alone is
nbProducts * nbFilterRules bits and thus strictly limited. The following tables show
the average running times for a rather hard test case for one of our real-world
knowledge bases that contains 70 filter rules. In the test cases, 25 of them were active
for some given customer requirements. The number of and size of the conflicts was
adequately increased with the size of the minimal relaxation that was to be found. The
numbers in the table correspond to average running times in milliseconds for finding
the first/best relaxation.

C HS/BS HS/DBQ BSA #N #TP C HS/BS HS/DBQ #N #TP

1 12 177.1 10 1 15 1 12 164.5 1 15
3 14 345.6 10 4 22 3 15 338.5 6 22
5 14 416.6 10 23 75 5 16 414.6 19 75
7 18 472.9 10 95 99 7 16 465.8 62 99
10 67 861.2 10 1346 228 10 35 697.1 471 187

Table 1: Breadth-first search for
first diagnosis

Table2: Depth-first / Branch & bound
for optimal diagnosis

 C: Cardinality of smallest relaxation
 HS/BS: HS-DAG construction, usage of bit-set representation
 HS/DBQ: HS-DAG construction, usage of dynamically constructed queries
 BSA: Analysis of bit-sets only (no HS-DAG)
 #N: Number of search tree nodes
 #TP: "Theorem prover" calls: DB-queries / Bit-set operations

6 Note that a relaxation of size 10 is already rather unrealistic and of little help for the user.

Conflict-directed filter relaxation 9

In that test case, all of the problems could be solved within the targeted time-frame
of one second, even when using database queries instead of the bit-set representation.
If no pre-computation of filter results was done, e.g., because all filter rules contain
variables, the search process needed about 40 additional milliseconds in our test
cases. The performance of the depth-first search in that test case is comparable (or
slightly better) than the breadth-first approach, i.e., a good solution was found early
and a lot of pruning could be done, i.e., fewer nodes had to be expanded. In general
this will vary, depending on the number of conflicts and diagnoses, the search
heuristic for the depth-first search and the particular characteristics of the importance
factors and so forth. An implementation variant based on A* produced results
comparable to those of the depth-first search.

Related work and Conclusions

Related work. Query-relaxation for content-based recommenders was recently
addressed in [9] and [10]. In this work, McSherry proposed an approach in which the
user is incrementally presented individual explanations for the retrieval failure and the
problem is iteratively solved. Such system behaviour can in principle also be
implemented based on our approach if we compute a minimal conflict in each step
and let the user decide how to proceed. Nonetheless, there might be many interactions
required (e.g., if we need to relax many filters), the system will not be able to predict
in general if the relaxation of the next sub-query will succeed, and no overall
optimum can be guaranteed. In addition, the number of queries required for
computing all conflicts before entering the recovery process may be too large for
interactive applications in their approach. An comparable iterative repair approach is
also implemented in our surrounding framework [7], where the user can interactively
change the priorities of the rules according to his/her preferences.

The identification of the reasons for a failure of a query is also an issue in the area
of Cooperative Query Answering. In [6], Godfrey shows complexity results for
finding Minimal Failing Sub-queries MSF (correspond to conflicts in our approach)
and maximal succeeding queries XSS (corresponding to our relaxed query) and
proposes algorithms for finding one and enumerating all MSF/XSS. Our algorithms
can be seen as alternatives to these basic mechanisms which are in addition capable of
exploiting priorities for steering the (best-effort) search process and also incorporate
recently developed algorithms for fast detection of minimal conflicts [8].

Incremental relaxation of overconstrained problems is also a well-known technique
in the Constraint Satisfaction world, see e.g., [12] or [14], where soft constraints and
Partial Constraint Satisfaction were introduced. These approaches, however, were
designed to work in the context of some specific reasoning technique and cannot be
easily applied to other problem solving or inference algorithms.

From the technological perspective, model-based diagnosis techniques for
detecting problems in Software systems have been introduced e.g., in [2] or [4]. We
see our approach in the general tradition of that work. Our future work includes the
extension of the approach towards the computation of "repair alternatives": Instead of
computing only possible relaxations, the goal will be to find a minimal set of changes
in the user requirements such that a solution can be found. Finally, we also aim at

10 Dietmar Jannach and Johannes Liegl

evaluating approaches that exploit abstraction hierarchies within the knowledge base
(see e.g., [3]), an approach that was also suggested as a tool for tackling the relaxation
problem for recommenders in [11].

Conclusions. In this paper, we have shown how conflict-directed search can be
used to significantly enhance the search for minimal relaxations of unsuccessful
queries in filter-based recommender systems. The evaluation of the approach in a
knowledge-based advisory framework has shown that even hard problem instances
can be solved within the short time frames that are required in interactive
recommender applications. Furthermore it was demonstrated how the usage of
specialized data structures and pre-processing techniques can further reduce the
number of required database queries and thus shorten response times. In our current
work, we aim at generalizing this pre-processing approach and also extending it with
a mechanism with which we can also compute relaxations (based on the bit-set
matrix) that lead at least to n different products, which shall give the end user more
choices when searching and comparing different items in a proposal.

References

[1] D. Bridge. Product recommendation systems: A new direction. In R. Weber and C.
Wangenheim, eds., Proceedings of the Workshop Programme at the Fourth International
Conference on Case-Based Reasoning, 2001, p. 79-86.

[2] L. Console, G. Friedrich, D. T. Dupré: Model-Based Diagnosis Meets Error Diagnosis in
Logic Programs. IJCAI'1993, Chambéry, France, 1993, p. 1494-1501.

[3] A. Felfernig A., G. Friedrich, D. Jannach, M. Stumptner: Hierarchical Diagnosis of large
configurator knowledge bases. In: S. McIlraith, D. T. Dupré (Eds.): 12th Intl. Workshop on
Principles of Diagnosis, 2001, p. 55-62.

[4] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner. Consistency-based diagnosis of
configuration knowledge bases, Artificial Intelligence, 152(2), 2004, p. 213-234.

[5] E. Freuder, R. J. Wallace: Partial Constraint Satisfaction, Artificial Intelligence (58), 1992.
[6] P. Godfrey. Minimization in Cooperative Response to Failing Database Queries,

International Journal of Cooperative Information Systems Vol. 6(2), 1997, p. 95-149.
[7] D. Jannach. ADVISOR SUITE - A knowledge-based sales advisory system. In:

Proceedings of ECAI/PAIS 2004, Valencia, Spain, IOS Press, 2004, pp. 720-724.
[8] U. Junker: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-

Constrained Problems. Proceedings AAAI'2004, San Jose, 2004, p. 167-172.
[9] D. McSherry, Explanation of Retrieval Mismatches in Recommender System Dialogues,

ICCBR'03 Mixed-Initiative Case-Based Reasoning Workshop, Trondheim, Norway, 2003.
[10] D. McSherry, Incremental Relaxation of Unsuccessful Queries, Lecture Notes in

Computer Science, Volume 3155, 2004, p. 331–345.
[11] N. Mirzadeh, F. Ricci and M. Bansal, Supporting User Query Relaxation in a

Recommender System, Proceedings of 5th Intl. Conference on Electronic Commerce and
Web Technologies, EC-Web '04, Zaragoza, Spain, 2004, p. 31-40.

[12] S. Mittal, B. Falkenhainer. Dynamic constraint satisfaction problems. In: Proceedings of
the 8th National Conference on Artificial Intelligence, AAAI'89, 1989, p. 25-32.

[13] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1),
Elsevier, 1987, p. 57-95.

[14] T. Schiex, H. Fargier, and G. Verfaille. Valued constraint satisfaction problems: Hard and
easy problems. In International Joint Conference on Artificial Intelligence IJCAI'95,
Montreal, Canada, 1995, p. 631-639.

