
Extending the Resource-Constrained Project
Scheduling Problem for Disruption Management

Jürgen Kuster, Dietmar Jannach

Abstract— This paper describes how the Resource-
Constrained Project Scheduling Problem (RCPSP) can be
used as a basis for comprehensive disruption management,
concerned with both rescheduling as well as potential struc-
tural process modifications. It is illustrated, how the
RCPSP can be extended by the possibility to represent al-
ternative activities and how the respective constructs can
be used to describe various forms of typical interventions.
Moreover, an approach for schedule optimization and the
resolution of the generalized problem is presented, based on
the combination of well-established methodologies and spe-
cific evolutionary operators. In an illustrative example it is
finally shown how the proposed framework can be applied
for the development of real-time decision support systems
in the domain of airport ground process management.

Index Terms— Real-Time Decision Support, Disruption
Management, Resource-Constrained Project Scheduling
Problem, Evolutionary Algorithm

I. Introduction

Uncertainty is an intrinsic and pervasive aspect of the
real-world [1]. Whenever it unfolds, deviations from a pre-
determined plan are likely: A so-called disruption occurs.
Disruption management (DM, see [1], [2]) is concerned with
the resolution of respective problems and the continuous
optimization of the relationship between real and planned
processes: Since predetermined schedules and plans are
typically optimized according to some specific criterion, the
main aim is to get back on track in case of process distur-
bances and to minimize associated costs. For this purpose,
an optimal combination of applicable interventions has to
be selected from a set of potential ones. Typically, both
rescheduling as well as structural process modifications have
to be considered in the resolution of real-world problems.

However, the currently existing applications of disrup-
tion management mainly focus on the rescheduling part of
the problem: They are concerned with the mere temporal
shift of activities within a schedule. Even though especially
Zhu et al. [3] introduce basic aspects of structural flexibil-
ity when considering mode alternations (i.e. the change of
the durations and the amount of resource usage of a spe-
cific activity) as a potential form of intervention, we claim
that this is still not sufficient for the effective provision
of decision support in realistic problems. Apart from the
temporal shift and the parametric modification of activi-
ties, the responsible decision maker might want to insert
or remove process steps, change their order or parallelize
what has been planned for serial execution (or vice versa).

J. Kuster is with the Department of Business Informatics and Ap-
plication Systems, University of Klagenfurt, Universitätsstraße 65-67,
9020 Klagenfurt, Austria (e-mail: jkuster@ifit.uni-klu.ac.at)

D. Jannach is with the Department of Business Informatics and
Application Systems, University of Klagenfurt, Universitätsstraße 65-
67, 9020 Klagenfurt, Austria (e-mail: dietmar@ifit.uni-klu.ac.at)

Research on disruption management is strongly driven
by operations research and thus focusing on the applica-
tion of mathematical programming. Although the use of
respective methods makes it possible to identify exact opti-
mal solutions, its main drawback compared to (only subop-
timal) metaheuristic approaches is the significantly higher
requirement of processing time: Therefore, the respective
methods can only be applied to relatively small problems,
if real-time results are required [4].

The work presented herein is motivated by the find-
ings of a study conducted in collaboration with Deutsche
Lufthansa AG, regarding the elementary requirements of
DM-related decision support systems (DSS): We propose
a novel approach to disruption management, considering
both rescheduling and structural modifications as potential
interventions in real-time DSS. For this purpose, the notion
of alternative activities is introduced for the description of
structural modifications and metaheuristic optimization is
applied to an accordingly extended version of the Resource-
Constrained Project Scheduling Problem (RCPSP). The
remainder of this document is structured as follows: Sec-
tion II introduces a framework for the formal description of
potential process modifications. Section III shows how re-
spective problems can be solved: Well-established method-
ologies are combined with specific methods based on the
concepts of evolutionary algorithms. Section IV provides
an illustrative example for the application of the introduced
concepts from the domain of airport ground process man-
agement. Finally, Section V summarizes the contributions
of this paper and gives an outlook on future work.

II. Modeling Process Interventions

This section describes how potential interventions can
be modeled formally. With a particular focus on structural
process modifications, the concept of alternative activities
is introduced and used as the basis for an extension of the
RCPSP. It is also illustrated how the associated constructs
can be used for describing typical forms of intervention.

A. Overview

Comprehensive disruption management has to consider
both rescheduling and structural modifications as potential
repair activities. Possibilities of the former type are typi-
cally implicitly given by the definition of precedence rela-
tions and associated resource constraints. Any conceptual
framework for schedule optimization can therefore form the
basis for the identification of optimal rescheduling inter-
ventions. However, as far as structural modifications are
concerned, additional modeling is usually required. Two
different strategies can be distinguished:

• External Description. Potential structural modifications
are detached from the process model. An intervention is
described through sets of activities and constraints, which
have to be added to or deleted from the originally planned
process. Therefore, respective add and delete lists represent
the elementary constructs for this form of representation.
Consider for example a simple network of two activities a
and b which are linked by a precedence constraint saying
that a has to be finished at or before the start of b. If we
assume that the parallelization of the activities represents a
potential modification, this intervention corresponds to the
removal of the single precedence relation. If alternatively
it shall be possible to insert an activity c between a and b,
the respective intervention corresponds to (1) the addition
of c to the network and (2) the replacement of the existing
precedence relation by two constraints defining that a needs
to be executed before c which itself is executed before b.
• Internal Description. Potential structural modifications
are contained within the process model. Given the exis-
tence of various available process variants, an intervention
corresponds to the switch from a previously chosen path to
a valid alternative. Therefore, alternative activities, which
correspond to the starting points of variable process exe-
cution paths, represent the elementary constructs for this
form of representation. Considering the example discussed
above, the former option can be described by introducing
a choice point into the reference (i.e. the default version
of the) process, where it is possible to select a or an al-
ternative a1 for execution: a1 differs from a in not being
linked with b through a precedence relation. For the latter
option, another alternative a2 is inserted, which represents
the origin for the sequence a2 before c before b.

Upon changes in the process model, respective interven-
tions have to be updated accordingly if potential modifica-
tions are regarded as separated from the processes (as with
an external form of description): This synchronization rep-
resents a highly sensitive task since any mistake may cause
inconsistencies in the disruption management problem. If
alternatively only one model is used for the description
of reference process and valid modification possibilities (as
with an internal form of description), a potential drawback
consists in the higher level of complexity associated with
the description and maintenance of the process structure.
In exchange, however, the difficulty of model synchroniza-
tion can be avoided as consistency is guaranteed implicitly.
Since we assume that this represents a major advantage for
realistic applications with flexibly and dynamically chang-
ing processes, and that the increased model complexity can
be efficiently handled through the provision of appropriate
(abstract) modeling constructs, we will focus on the latter
form of representation in the following.

B. Extending the RCPSP

The Resource-Constrained Project Scheduling Problem
provides a well-established framework for the resolution of
scheduling problems. In the regarded context, we claim
that it is perfectly suited for the resolution of the reschedul-
ing part of the problem, due to the following reasons:

• Defining an RCPSP is easy and intuitive. Based on ab-
stract constructs such as activities, resources, precedence
constraints, etc. it is possible to define entities and rela-
tionships on a conceptual level. Therefore, especially main-
tainability is significantly better than for comprehensive
mathematical models.
• Metaheuristic approaches can be used for optimization.
Local search, tabu search, genetic algorithms, ant colonies,
etc. can be used to search for solutions. By the use of such
incremental search procedures the provision of good results
is even possible in real-time: This corresponds to the real-
istic requirements of disruption management, where deci-
sions must rather be made in short time than in a (globally)
optimal manner.
• The RCPSP has been and still is studied extensively. Re-
search particularly focuses on the (further) improvement of
optimization algorithms and the extension and generaliza-
tion of the respective modeling concepts.

However, as far as structural flexibility is concerned, the
RCPSP provides only little support. The only form in
which respective modifications are possible, is the alter-
nation of modes in the Multi-mode RCPSP (MRCPSP,
see [5]): This generalization of the classical scheduling
problem makes it possible to dynamically consider changes
in durations and in the amounts of required resources.
Moreover, Artigues et al. [6] and Elkhyari et al. [7] recently
presented their ideas of providing the RCPSP with addi-
tional flexibility: The former focus on the dynamic inser-
tion of activities, considering each arrival of an unexpected
activity a disruption. The latter use explanations to handle
over-constrained networks in dynamic scheduling problems.
As regards the concept of alternative activities, only Beck
et al. [8] have considered options of activity replacement
in scheduling problems: Their approach is based on the
association of a Probability of Existence (PEX) with any
activity.

In a more general approach, we introduce a method
for describing alternative activities (as discussed before)
within the conceptual framework of the RCPSP. For this
purpose, we define the Extended Resource-Constrained
Project Scheduling Problem x-RCPSP as a generalization
of the classical problem. The basic idea of the extension
is a distinction between active and inactive elements, all
grouped and described in a comprehensive model, where
only the former group of elements is actually considered in
the scheduling process. Thus, the x-RCPSP is based on
the introduction of an additional layer on top of the orig-
inal RCPSP: Depending on the current state of element
activation, different instances of the classical problem can
be generated from the respective supersets. This way, the
well-established methods which have been defined for the
resolution of the RCPSP [9] can be applied for the gen-
eration of valid schedules. For the x-RCPSP, the aim of
optimization is the identification of an optimal activation
state as well as the identification of an optimal sequence
for all active activities. Note that each change of the acti-
vation state corresponds to the selection of an alternative
process execution path.

The structure of the x-RCPSP can be described as fol-
lows. A project (or process respectively) is defined by a
set of potential activities A+ = {0 , 1 , ..., a, a + 1}. The
first and the last element correspond to abstract start and
end activities having a duration of 0 and no resource re-
quirements associated. All active activities form a subset
A ⊆ A+ which implies that all inactive activities are con-
tained in A+ \ A. The activities grouped in A0 ⊆ A+

form the so-called reference process: This subset defines
the default activation state and the preferred version of
the process which is considered before a disruption occurs.
The execution of the respective activities is based on a set
of non-renewable resource types R = {1 , ..., r}. For each
type k, a constant amount of uk units is available. As
regards the description of activity dependencies, the fol-
lowing constructs can be used:
• Duration Value. Each activity i has an duration di asso-
ciated, describing how long its execution lasts.
• Precedence Constraints. Activities can be ordered by the
use of precedence constraints: The existence of pi,j states
that activity i has to be finished at or before the start of
activity j. According to the distinction between active and
inactive activities, two different sets are used for grouping
precedence relations: P+ contains all potentially relevant
constraints, whereas the subset P ⊆ P+ groups only those
pi,j for which both i and j are contained in the set of active
activities A.
• Resource Requirements. The relationship between activi-
ties and resource types is defined through resource require-
ments: An activity i requires qi,k units of type k throughout
its execution. Q+ combines all potential dependencies of
elements in A+ on elements in R whereas Q only comprises
those requirements qi,k for which the associated activity i
is currently active.

The set of active activities represents the most impor-
tant of all subsets: Whenever a change occurs therein, the
set of active precedence constraints and resource require-
ments have to be synchronized accordingly. Li et al. [10]
have argued the necessity to consider mutual dependencies
when regarding alternative resources: We therefore use the
following relationships to define modification possibilities:
• Activity Alternatives X+. An activity i can be deacti-
vated upon the activation of activity j if xi,j is contained
within this set. It therefore describes the elementary pos-
sibilities of activity substitution. Note that the respective
relationship is not necessarily commutative since the option
of replacing activity i with activity j does not automati-
cally imply the possibility to substitute j with i.
• Mutual Dependencies M+. Changing the state of an ac-
tivity might have an impact on other activities. For this
purpose, this set describes two types of binary and non-
commutative relationships between the elements of A+:
Mutual exclusion is described through the addition of an el-
ement mª

i,j , which defines that activity j shall be removed
from the schedule upon activation of activity i. Corre-
spondingly, mutual inclusion is described through the ad-
dition of an element m⊕

i,j , which defines that j is always
added to A+ along with i.

The x-RCPSP represents a generalization of the classical
RCPSP: Any instance of an x-RCPSP with X+ = M+ = ∅
can be converted into an equivalent RCPSP. Correspond-
ingly, the methodologies for the resolution of the classi-
cal problem can be applied to our generalization, as soon
as A is stable. Furthermore, the Extended Resource-
Constrained Project Scheduling Problem generalizes the
Multi-Mode RCPSP: An x-RCPSP can be converted into
an MRCPSP if all of the following statements are true:

∃xj ,i : xj ,i ∈ X+ ∀xi,j ∈ X+ (1)

∃xi,k : xi,k ∈ X+ ∀xi,j , xj ,k ∈ X+ (2)

∃pj ,k : pj ,k ∈ P+ ∀xi,j ∈ X+, pi,k ∈ P+

∃pk ,j : pk ,j ∈ P+ ∀xi,j ∈ X+, pk ,i ∈ P+ (3)

M+ = ∅ (4)

Statement (1) means that any potential exchange of ac-
tivities can be inverted directly. The possibility of return-
ing to an original version is never restricted to cyclic paths
only. Statement (2) defines the requirement that all indi-
rectly reachable alternatives can also be reached directly.
Switching from one alternative to another one must never
require a detour. Statement (3) says that all exchangeable
activities have the same sets of preceding and succeeding
activities assigned. They are located at exactly the same
position in the process. Statement (4), finally, defines that
the set of mutual dependencies must be empty. The num-
ber of elements in A is therefore constant.

C. Modification Patterns

This section illustrates how the concept of alternative
activities can be used for the description of typical forms
of process modification. In the following, mode alterna-
tion, resource alternation/capacity change, activity inser-
tion/removal, order switch and serialization/parallelization
are discussed. For improved readability a simplified form
of notation is used in the following: i → j defines that
pi,j ∈ P+, i . n × k defines that qi,k = n ∈ Q+, i ⇒ j de-
fines that xi,j ∈ X+, i ⇔ j defines that xi,j , xj,i ∈ X+, i⊕j
defines that m⊕

i,j ∈M+ and iª j defines that mª
i,j ∈M+.

C.1 Mode Alternation

An activity mode can be defined as a fixed combination
of duration and resource requirements [5]. Activities, for
which different execution modes are available, are consid-
ered multi-mode. A mode alternation corresponds to the
switch from a previously chosen mode to another one. In
the context of the RCPSP, it is a particular characteristic of
the MRCPSP to be able to optimize the current mode selec-
tion along with the activity sequence. It has already been
discussed under which circumstances the x-RCPSP can be
converted into the more specific Multi-mode RCPSP (see
Section II-B). In this section, it is shown how potential
mode alternations can be described within the x-RCPSP.

For this purpose, we consider an original network of three
activities a, b and c, forming a sequence of alphabetical or-
der. The mode of activity b shall be variable: Mode α

corresponds to the original version, mode β to a slower but
less resource-intense version and mode γ, finally, to a faster
version requiring more resources. To describe the possibil-
ity of changing the execution mode of an activity, we insert
one alternative activity per option into A+: Instead of hav-
ing b in the network we thus distinguish bα, bβ and bγ . All
alternatives are based on the original version of the activ-
ity: The associated precedence relations are identical and
differences merely concern durations and resource require-
ments. The execution of a mode alternation corresponds
to the exchange of an activity with another one. It is nec-
essary to describe the respective possibilities in X+, where
the option of switching any pair of alternatives has to be
defined. For the considered example, Table I compares the
original with the accordingly modified network.

TABLE I

Mode Alternation in the x-RCPSP.

Original Modified Network
A+ a, b, c a, bα, bβ , bγ , c
P+ a → b,

b → c
a → bα, a → bβ , a → bγ ,
bα → c, bβ → c, bγ → c,

X+ ∅ bα ⇔ bβ , bα ⇔ bγ , bβ ⇔ bγ

M+ ∅ ∅

C.2 Resource Alternation and Capacity Change

Interventions regarding the dynamic modification of re-
source requirements and availabilities can also be modeled
within the framework of the x-RCPSP. Both the option of
switching between alternative resources and the option of
modifying resource capacities can be defined based on the
previously described concepts of activity mode alternation.

The definition of alternative resources is first of all based
on the introduction of an additional resource type. The
possibility to execute an activity on this or the originally
intended resource is described through the introduction of
an additional activity mode. This way, full flexibility is
provided in the definition of alternatives: Effects on costs,
durations and resource requirements can be described per
activity, for example. The drawback of the additional work-
load, which is required for modeling, can be alleviated
through the provision of abstract modeling constructs.

The possibility of capacity change is described in a sim-
ilar way: Instead of changing uk directly, an additional
(alternative) resource type is introduced, representing the
available standby units. For each activity, which might
trigger a temporary extension of resource capacities, an al-
ternative activity is introduced, defining the relationship
between the process step and the reserves. We claim that
this approach represents an appropriate method for the de-
scription of respective interventions: In realistic scenarios
capacity changes are typically motivated by and executed
for specific activities. Moreover, a high level of flexibility
is provided through the possibility to define dependencies
per activity. Again, additional modeling workload can be
eliminated through the provision of appropriate modeling
constructs.

C.3 Activity Insertion/Removal

The dynamic insertion or removal of an activity repre-
sents an elementary form of potential structural process
modification. This section illustrates how this option can
be described by the use of the proposed constructs.

Again, we consider a simple sequence of three activities
a, b and c as the original network. The possibility of in-
serting an additional process step e between b and c (or
remove it from there, respectively) shall be described. For
this purpose we distinguish two alternative versions of the
optional activity’s predecessor b: b+ is bound with the ex-
ecution (i.e. activation) of e whereas b¬ is bound with the
omission (i.e. deactivation) of e. As regards precedence
constraints, e is executed after its predecessor b+ and be-
fore the start of all successors of the original b. The in-
sertion or removal of the optional activity corresponds to
the switch from one alternative predecessor to the other
one. The respective possibility is described through the
insertion of appropriate elements into X+. As regards the
associated modifications in the set of active activities, M+

is used to define internal dependencies: Activity e is linked
to b+ in mutual inclusion and to b¬ in mutual exclusion.
Correspondingly, Table II compares the original network
to a modified version, in which it is possible to insert and
remove activity e.

TABLE II

Activity Insertion/Removal in the x-RCPSP.

Original Modified Network
A+ a, b, c a, b+, b¬, c, e
P+ a → b,

b → c
a → b+, a → b¬,

b+ → e, e → c, b¬ → c
X+ ∅ b+ ⇔ b¬
M+ ∅ b+ ⊕ e, b¬ ª e

C.4 Order Switch

Alternative activities can also form the basis for the de-
scription of the possibility to switch the execution order of
two arbitrary process steps.

If we consider a sequence of four activities a, b, c and d
and if the possibility to exchange b and d shall be described,
two versions of process execution can be distinguished: In
one version b is considered before, in the other version b is
considered after d. Correspondingly, each of the movable
process steps is replaced by two alternative activities: One
of these alternatives is positioned according to the origi-
nal reference process and the other one is executed at the
position of the respective counterpart. In the considered
example, b1(d1) inherits all related precedence constraints
from b(d) whereas b2(d2) is attached to the predecessors
and successors of d(b). The possibility to execute the switch
operation is defined in X+ and the dependencies between
b and d are described in M+: It has to be guaranteed that
always the same alternatives are active for both activities.
Table III summarizes the differences between the original
and the modified network, which provides the possibility
to switch b and d.

TABLE III

Order Switch in the x-RCPSP.

Original Modified Network
A+ a, b, c, d a, b1, b2, c, d1, d2

P+ a → b,
b → c,
c → d

a → b1, a → d2,
b1 → c, d2 → c,
c → d1, c → b2

X+ ∅ b1 ⇔ b2, d1 ⇔ d2

M+ ∅ b1 ⊕ d1, b1 ª d2,
d1 ⊕ b1, d1 ª b2

b2 ⊕ d2, b2 ª d1

d2 ⊕ b2, d2 ª b1

C.5 Serialization/Parallelization

Another potential form of structural modification is the
serialization of what has been planned for parallel or the
parallelization of what has been planned for serial execu-
tion. In the following it is described how this can be for-
mulated within the x-RCPSP.

We consider a sequence of six activities a to f . The
possibility of parallelizing the subsequence b to d with the
execution of e shall be described. For this purpose, it is
sufficient to introduce an alternative for the first activity
of the latter sequence: e| represents the option of serial
execution whereas e‖ represents the option of parallel exe-
cution. As regards precedence relations, e| merely replaces
the original activity e, whereas the parallelized version is a
successor of all predecessors (a) of the first activity of the
former sequence (b) and a predecessor of all successors (f)
of the original activity (e). Moreover, the last element of
the originally preceding subsequence (d) has to be linked
directly with the successor/s of the originally succeeding
subsequence (f). The possibility to switch between serial
and parallel execution is expressed through the insertion of
a bidirectional exchange relationship into X+. No mutual
dependencies have to be defined. Table IV compares the
original with the accordingly modified network.

TABLE IV

Parallelization/Serialization in the x-RCPSP.

Original Modified Network
A+ a, b, c, d, e, f a, b, c, d, e|, e‖, f
P+ a → b,

b → c,
c → d,
d → e,
e → f

a → b, a → e‖,
b → c,
c → d,

d → e|, d → f
e| → f, e‖ → f

X+ ∅ e| ⇔ e‖
M+ ∅ ∅

III. Solving the Extended Model

This section describes how the extended version of the
RCPSP can be solved based on an evolutionary approach.
The choice of a metaheuristic optimization procedure has
mainly been made for reasons of performance: Respec-

tive search methods typically can provide good results for
larger problems in shorter time than exact optimization
approaches of mathematical programming [11]. This fea-
ture corresponds to the realistic requirements of real-time
disruption management.

Even though the main focus of this section is on the
provision of decision support in the area of process disrup-
tion management in appropriate time, the possibilities of
using the x-RCPSP for classical scheduling tasks such as
the generation and optimization of an initial schedule are
also described. In the following, first the notion of schedule
and activity list is introduced. Then, the generation of an
initial solution is discussed before finally the evolutionary
approach for its incremental optimization is presented.

A. The Object of Optimization

The aim of disruption management is the identification
of a set of interventions, which can be applied to the cur-
rently existing schedule in response to a disruption. In the
context of the x-RCPSP it is thus necessary to optimize
the activation state along with the activity sequence.

Schedules represent the start and end point of opti-
mization. Basically, a schedule corresponds to a vector
(β1, β2, ..., βn), grouping the starting times βi of all active
activities. If we assume At to be the set of activities car-
ried out at time t, a schedule is considered valid, if all of
the following statements are true (cf. [9]):

βi ≥ 0 ∀i ∈ A (5)

βi + di ≤ βj ∀pi,j ∈ P (6)
∑

i∈At
qi,k ≤ uk ∀k ∈ R, ∀t (7)

Constraint (5) defines the domain for all starting times:
No negative values are allowed. Constraint (6) checks if all
precedence constraints are respected: The difference be-
tween the starting times of two linked activities must be
equal to or greater than the duration of the preceding one.
Constraint (7) finally defines that resource requirements
must never exceed the available capacities.

Due to the difficulty of operating directly on time val-
ues when doing optimization [4], it is a common approach
to introduce an intermediary layer of solution representa-
tion [9]: Respective forms of representation are composed
of easily describable and modifiable elements and can be
transformed into a schedule unambiguously. From the var-
ious potential candidates (see [9] for an overview) we de-
cided on the use of activity lists: λ corresponds to a prece-
dence feasible list sorting all active activities in the order
they shall be considered in the schedule generation. Re-
spective schemes for the conversion of λ to a final set of
time values have been described by Kolisch et al. [9] and
Hindi et al. [4], for example: Their approaches are based
on the sequential insertion of the list’s activities at the
earliest possible starting time. Note that such a Schedule
Generation Scheme (SGS) always generates the same set
of starting times for an activity list whereas one schedule
might be associated with various different lists.

B. The Initial Solution

Optimization in the context of disruption management
targets at the identification of the activity list which pro-
vides the best combination of final schedule and associated
interventions. Since the proposed approach is based on in-
cremental improvement, the starting point of optimization
is an initial activity list corresponding to a disrupted or
unoptimized schedule. As regards the generation of the re-
spective λ0, basically two scenarios can be distinguished:
Either a currently existing schedule has to be considered
and optimized (as in disruption management) or no sched-
ule is given and the reference process represents the only
starting point for optimization (as in classical scheduling).

For disruption management, the given schedule can be
converted into an original activity list easily: Since the
existing timetable is assumed to respect all precedence
requirements, it is sufficient to simply sort all elements
i ∈ A+, which have actually been considered for execu-
tion and which have not been started yet, according to
their starting times. If, alternatively, no existing schedule
is given, a valid and feasible sequence has to be generated
based on the reference process A0 . Algorithm 1 summa-
rizes the respective procedure (cf. [4]) which can be used
for the transformation of any combination of activity set
and associated precedence constraints into an activity list
λ: For this purpose, all contained activities are added se-
quentially. In each step, first the set of currently schedu-
lable process steps A∗ is determined: It basically consists
of all activities which have not been scheduled so far and
which do not have any or only previously considered pre-
decessors. Note that P i is used to refer to the set of all
preceding activities of process step i. If A∗ is empty before
all elements have been added to λ, the network described
by the processed sets is over-constrained and no valid ac-
tivity list can be identified: The method returns without
any result in line 3. Otherwise, an arbitrary element of
A∗ is selected and added at the end of λ. After all ele-
ments of the considered set of activities have been added,
the method returns the thereby created activity list.

Algorithm 1 Generate Activity List (A,P)
1: repeat
2: A∗ ← {i ∈ A|i /∈ λ ∧ (P i = ∅ ∨ P i ⊆ λ)}
3: if A∗ = ∅ then return false
4: else add an arbitrary element of A∗ at the end of λ
5: until |λ| = |A|
6: return λ

C. An Evolutionary Algorithm

In an evolutionary algorithm, optimization is accom-
plished through the continuous evolution of a population:
Each generation comprises the fittest individuals of the pre-
vious one and their children, which are generated through
recombination and mutation. The main idea behind this
concept is that a combination of good solutions might re-
sult in or be at least close to even better ones.

This section introduces an evolutionary algorithm for the
optimization of the x-RCPSP. First, some general remarks
are made on initial population, fitness function and se-
lection scheme before afterwards specific versions of the
crossover and mutate operators are described, which take
the existence of alternative activities into account.

C.1 Initial Population, Fitness and Selection

The initial population consists of the initial solution and
a certain amount of fellows: All of them are deduced di-
rectly from λ0 through the application of the mutation op-
erator (as discussed below). This first generation therefore
combines the option of not intervening at all with several
possibilities to apply exactly one form of intervention.

The assessment of the quality of a population and the
comparison of solutions is based on a so-called fitness func-
tion. In the context of the x-RCPSP, this function evalu-
ates activity lists through their conversion into one single
numeric value: Both the set of applied interventions as
well as the implicitly defined schedule are considered in
light of the predetermined goals of schedule optimization.
Whereas most scheduling approaches for the resolution of
the RCPSP focus on the minimization of total process ex-
ecution time (the so-called makespan), disruption manage-
ment is rather concerned with the implications of earliness
and tardiness, costs for interventions as well as the differ-
ence from the original plan, for example.

As long as the current population does not fulfil the
specified optimization criteria, a new generation is deduced
from the existing one. It is composed of the fittest individ-
uals and several children, the parents of which are selected
with a probability proportional to their relative fitness.

C.2 A Crossover Operator for the x-RCPSP

Handling the potentially distinct sets of activities con-
tained within the activity lists represents the main diffi-
culty in the combination of two parent solutions. A re-
spective procedure, which is based on the idea that one
parent λa prescribes the interventions to consider (i.e. the
activation state of the child) whereas the other one λb de-
fines relative priorities of the contained process steps (i.e.
the list order), is summarized in the following.

First it is checked whether the activity sets associated
with both lists are identical: If so, an RCPSP-related
crossover operator can be applied to the lists (see [4], for
example). Otherwise, an x-RCPSP-specific procedure is ex-
ecuted. The problem that one activity list shall prescribe
the order of a distinct set of activities is resolved by the
use of a so called transition set T ⊆ X+. This set basi-
cally describes how to convert the elements of λb into the
elements of λa. If X a is the set of structural modifications
which led from λ0 to λa, T combines all elements which
either exist in X a or X b : Note that for a successful conver-
sion it has to be possible to invert all modifications which
are exclusive to the latter set. Based on this transition set
and the prescribed order of activities, a new activity list is
generated in an iterative procedure: All elements of λb are
either appended themselves, replaced by potential substi-

tutes or ignored (e.g. if an activity is mutually excluded by
a future replacement). Any activity exchange has of course
to consider all associated dependencies as defined in M+.

C.3 A Mutation Operator for the x-RCPSP

As regards mutation, which is potentially applied to
newly generated children in order to avoid early conver-
gence to only local optima, again a specific version of the
operator has to be introduced for the x-RCPSP. A proce-
dure considering also the possibility to change the struc-
ture of the process (i.e. to exchange alternative activities)
is briefly described in the following.

First, a random value is generated which determines,
if either rescheduling or a structural modification is ap-
plied: A fixed value θ defines respective probabilities. In
the former case, again an RCPSP-related method can be
applied for the mere rearrangement of the elements con-
tained within the activity list. In the latter case, an activ-
ity is replaced by an alternative: For this purpose a valid
modification xi,j ∈ X+ is randomly selected for an arbi-
trary element of λ: Activity i and all elements excluded by
j are removed from the activity list, whereas j and all mu-
tually included activities are inserted at the former position
of i. Note that this exchange operation has to be prece-
dence feasible: An added activity can only be inserted after
its last predecessor and all associated successors have to be
shifted to its right-hand side.

IV. Exemplary Application

This section provides an illustrative example for the ap-
plication of the previously introduced concepts to a real-
istic problem of real-time disruption management. After
the introduction of the turnaround process – the most typ-
ical airport ground process – and three exemplary forms of
potential interventions, it is shown how the x-RCPSP can
be used for its description and how the evolutionary opti-
mization approach can be applied. Finally, some remarks
on the respective prototype implementation are made.

A. Overview

The presented approach of disruption management can
be applied to various problems in various domains. Wher-
ever it is necessary to provide comprehensive decision sup-
port in the operative management of disruptions of time-
and resource-dependent processes, the respective concepts
can be used as a basis for the proposal of interventions con-
cerning rescheduling and structural process modifications.
Project management (see [1], [3]), production planning
(see [12], [13]), supply chain management (see [1], [14]),
logistics management (see [1]) or traffic flow management
represent typical examples of potential fields of application.

Another field, in which disruption management plays
a particularly important role, is the domain of air traf-
fic (see [2], [15], [16], [17]). Whereas existing applications
mainly focus on aircraft and crew scheduling, we will al-
ternatively illustrate how the proposed concepts can be
applied for real-time disruption management in the turn-
around process. This process basically combines all activi-

ties carried out at an airport while an aircraft is on ground.
Instead of considering all actually relevant process steps, a
simplified version will be regarded, basically correspond-
ing to the combination of core processes as mentioned by
Carr [18]: After the plane reaches its gate or stand posi-
tion, first the incoming passengers leave the aircraft. It is
then fueled, cleaned and catered simultaneously before the
outgoing passengers enter the plane. Finally, it leaves its
position heading for the runway.

In the following, we will assume an instance of this
process, in which a disruption occurs during taxi-in, prior
to deboarding. This way, a departure delay is caused by
the delay of the first activity and the implied shift of all
succeeding process steps. For the resolution of this prob-
lem we assume the existence of three basic forms of po-
tential structural modifications: First, an acceleration of
deboarding can be reached through the assignment of ad-
ditional busses. Second, it is possible to shorten cleaning, if
in exchange the cabin is additionally inspected by the cabin
crew prior to boarding. Third, fueling and boarding can be
parallelized if the fire brigade is present for supervision. As
regards potential options of rescheduling, respective possi-
bilities are defined by the process structure itself.

B. Modeling the Turnaround Process

Along with the reference process we define the possibili-
ties of structural modifications based on the patterns intro-
duced in Section II-C. A potential acceleration of board-
ing through the assignment of additional resources corre-
sponds to the simple option of mode alternation. Shorten-
ing cleaning and inserting an additional step of inspection
corresponds to a mixture of mode alternation and activity
insertion. Finally, the possibility to execute boarding and
fueling in parallel corresponds to a specific version of ac-
tivity parallelization. The model resulting from the appli-
cation of the respective patterns is summarized in Table V.
Note that in realistic applications graphical interfaces can
be used for the intuitive creation of such models.

TABLE V

Formal Description of the Exemplary Turnaround Process

Set Content
R Bus, Firebrigade
A0 Start, Deb, Fue, Cat, Cle, Boa, End
A+ Start, Deb, DebBus, Fue, FuePar, Cat, Cle,

CleRed, Ins, Boa, End
P+ Start → Deb, Start → DebBus, Deb → Fue,

Deb → FuePar, Deb → Cat, Deb → Cle,
Deb → CleRed, DebBus → Fue, DebBus →
FuePar, DebBus → Cat, DebBus → Cle,
DebBus → CleRed, Fue → Boa, FuePar →
End, Cat → Boa, Cle → Boa, CleRed → Ins,
Ins → Boa, Boa → End

Q+ Deb . 1×Bus, DebBus . 2×Bus, FuePar . 1×
Firebrigade

X+ Deb ⇔ DebBus, Fue ⇔ FuePar, Cle ⇔ CleRed

M+ CleRed ⊕ Ins, Cleª Ins

Fig. 1. Reduction of Delay Minutes in Turnaround Optimization

C. Airport Ground Process Disruption Management

Given the disruption of the regarded example, the
aim of turnaround process disruption management is
the minimization of the associated negative impact: An
exemplary goal might be the elimination of all pend-
ing delays. As regards the initial solution, we assume
that 〈Deb, Fue, Cle, Cat, Boa〉 can be extracted as λ0.
For this activity list, various fellows can be generated
through mutation, forming the first generation: Exam-
ples of respective instances are 〈Deb, Cle, Fue, Cat, Boa〉
and 〈Deb, Fue,CleRed, Ins, Cat,Boa〉. If none of the con-
tained solutions fulfils a predetermined stopping crite-
rion, new generations are deduced from the fittest indi-
viduals: Applying the crossover operator on two parents
λa = 〈DebBus, Fue, Cle, Cat, Boa〉 and λb = 〈DebBus,
Cat, CleRed, Ins,Boa, FuePar〉 generates the child activity
list 〈DebBus, Cat, Cle, Fue, Boa〉 by the use of the transi-
tion set T = {CleRed ⇒ Cle,FuePar ⇒ Fue}. As soon as
the goal of optimization is reached or a certain amount of
time has passed, the genetic algorithm stops and provides
a set of the best solutions found so far. The respective
schedules implicitly describe associated interventions.

D. Prototype Implementation

The presented approach has been implemented in a pro-
totype based on Java. In an exemplary setting, we consid-
ered p = 20 instances of the discussed version of the turn-
around process: We defined the durations of the elements
in A+ to be (0, 15, 7, 20, 20, 9, 14, 8, 1, 15, 0) and assumed
the deadline of all processes to be 0. Given the availability
of 10 busses and 3 fire brigades, the unmodified reference
processes therefore cause an overall delay of 1150 minutes.
Based on the n = 3 provided modification possibilities, this
value can be reduced to 984 minutes at most: As regards
structural interventions only, in the worst case 2n∗p = 260

schedules have to be evaluated for the identification of this
theoretical optimum. In our heuristic approach, we consid-
ered 60 generations with 10 members each: By evaluating
only 600 solutions, about 75% of the full optimization po-
tential could be tapped within 4 seconds on a standard PC
with 1800 MHz and 512 MB RAM. Figure 1 illustrates an
exemplary reduction of the delay minutes associated with
the best known solution throughout the generations.

These first results are promising, especially since the cur-
rent implementation is still unoptimized and no domain-
specific knowledge is considered in the search procedure.
Intended improvements concern further reductions of the
search space and the optimization of the selection process.

V. Conclusions and Future Work

This paper described how both rescheduling and struc-
tural process modifications can be considered in a compre-
hensive approach to disruption management. In various
modification patterns, the possibilities to describe poten-
tial forms of interventions based on the concept of alterna-
tive activities have been illustrated. An extended version
of the well-known RCPSP has been introduced and a meta-
heuristic optimization approach based on an evolutionary
algorithm has been presented. Finally, the application of
the introduced concepts to a realistic problem has been
discussed based on the airport turnaround process.

As mentioned before, future work will be directed on the
development of techniques for reducing the search space
(based on a matchup point strategy, for example), the pro-
vision of possibilities to introduce domain-specific knowl-
edge and the respective optimization of the prototype. A
final aim is the generation of comparable benchmark results
for realistic problems in realistic sizes.

References

[1] G. Yu, X. Qi, Disruption Management: Framework, Models and
Applications, World Scientific Publishing, Singapore, 2004.

[2] J. Clausen, J. Hansen, J. Larsen, A. Larsen, Disruption Manage-
ment, ORMS Today, 28: 40-43, 2001.

[3] G. Zhu, J.F. Bard, G. Yu, Disruption management for resource-
constrained project scheduling, Journal of the Operational Re-
search Society, 56: 365-381, 2005.

[4] K.S. Hindi, H. Yang, K. Fleszar, An Evolutionary Algorithm for
Resource-Constrained Project Scheduling, IEEE Transactions on
Evolutionary Computation, 6: 512-518, 2002.

[5] S. Hartmann, Project Scheduling with Multiple Modes: A Genetic
Algorithm, Annals of Operations Research, 102: 111-135, 2001.

[6] C. Artigues, P. Michelon, S. Reusser, Insertion techniques for
static and dynamic resource constrained project scheduling, Eu-
ropean Journal of Operational Research, 149: 249-267, 2003.

[7] A. Elkhyari, C. Guéret, N. Jussien, Constraint Programming for
Dynamic Scheduling Problems, ISS’04, Japan, 84-89, 2004.

[8] J.C. Beck, M.S. Fox, Constraint Directed Techniques for Schedul-
ing with Alternative Activities, Artificial Intelligence, 121: 211-
250, 2000.

[9] R. Kolisch, S. Hartmann, Heuristic Algorithms for solving the
Resource-Constrained Project Scheduling Problem: Classification
and Computational Analysis, Project scheduling: Recent models,
algorithms and applications, 147-178, Ed: J. Weglarz, Kluwer,
Amsterdam, Netherlands, 1999.

[10] R.K-Y. Li, R.J. Willis, Alternative resources in project schedul-
ing, Computers and Operations Research, 18: 663-669, 1991.

[11] J. Bautista, A. Lusa, R. Suárez, M. Mateo, R. Pastor, A.
Corominas, Application of Genetic Algorithms to Assembly Se-
quence Planning with Limited Resources, IEEE Int. Symposium
on Assembly and Task Planning, Porto, Portugal, 411-416, 1999.

[12] J. Yang, X. Qi, G. Yu, Disruption management in production
planning, Naval Research Logistics, 52: 420-442, 2005.

[13] Y. Xia, M.H. Yang, B. Golany, S. Gilbert, G. Yu, Real-time
disruption management in a two-stage production and inventory
system, IIE Transactions, 36: 111-125, 2004.

[14] M. Xu, X. Qi, G. Yu, H. Zhang, C. Gao, The demand disruption
management problem for a supply chain system with nonlinear
demand functions, JSSSE, 12: 82-97, 2003.

[15] B. Thengvall, J.F. Bard, G. Yu, Balancing user preferences
for aircraft schedule recovery during irregular operations, IIE
Transactions on Operations Engineering, 32: 181-193, 2000.

[16] N. Kohl, A. Larsen, J. Larsen, A. Ross, S. Tiourine, Airline
Disruption Management - Perspectives, Experiences and Outlook,
Technical Report, IMM, Technical University of Denmark, 2004.

[17] J. Clausen, A. Larsen, J. Larsen, Disruption Management in
the Airline Industry - Concepts, Models and Methods, Technical
Report 2005-01, IMM, Technical University of Denmark, 2005.

[18] F. R. Carr, Robust Decision Support Tools for Airport Surface
Traffic, PhD Thesis, Massachusetts Institute of Technology, 2004.

