
A Knowledge-Based Framework for the Rapid
Development of Conversational Recommenders

Dietmar Jannach and Gerold Kreutler

Institute for Business Informatics and Application Systems
University Klagenfurt
Universitätsstraße 65

9020 Klagenfurt, Austria
{dietmar.jannach, gerold.kreutler}@uni-klu.ac.at

Abstract. Web-based sales assistance systems are a valuable means to guide
online customers in the decision-making and product selection process. Conver-
sational recommenders simulate the behavior of an experienced sales expert,
which is a knowledge-intensive task and requires personalized user interaction
according to the customers’ needs and skills. In this paper, we present the AD-
VISOR SUITE framework for rapid development of conversational recommenders
for arbitrary domains. In the system, both the recommendation logic and the
knowledge required for constructing the personalized dialog and adaptive web
pages is contained in a declarative knowledge-base. The advisory application
can be completely modeled using graphical tools based on a conceptual model
of online sales dialogs. A template mechanism supports the automatic construc-
tion of maintainable dynamic web pages. At run-time, a controller component
generically steers the interaction flow. Practical experiences from several com-
mercial installations of the system show that development times and costs for
online sales advisory systems can be significantly reduced when following the
described knowledge-based approach.

Introduction

Customers are increasingly overwhelmed by the variety of comparable products or
services available on the market. Unlike in real buying environments where sales
experts with adequate experience and knowledge support customers in selecting the
optimal product, in the online channel customers are generally not provided with good
sales assistance. Thus, online customer assistance is not only a means to reach a com-
petitive advantage by offering an additional value to the customers, in e-commerce it
is even a necessity. Web-based sales assistance and recommendation systems are used
to guide online customers in their product selection process. In order to be of real
value, such systems have to simulate the behavior of a human sales assistant, i.e.,
elicit the customer’s needs and preferences in a personal dialog ([1], [2]) and come up
with one or more suitable proposals. In addition, adequate explanations for the rec-
ommendation are required in order to increase the customer’s confidence in his buy-

ing decision. Such dialogs have to be carried out in a conversational style ([3], [4]),
i.e. with a mixed-initiative interaction.

In a real world conversation, there are two types of knowledge that an experienced
sales assistant exploits. First, there is the basic recommendation knowledge to deter-
mine the suitable product according to the customer’s needs and preferences. Second,
the sales assistant needs to know how to acquire the real customer’s needs. Intuitively,
he will therefore adapt his conversation style to the customer’s skills and then ask
different questions or offer adequate explanations, depending on the current situation.

The goal of the ADVISOR SUITE project was to develop a framework and correspon-
ding tools for rapidly building intelligent, maintainable conversational recommenders
for arbitrary domains. Using an expert system is the natural choice for such a problem,
as the expert’s knowledge is made explicit and stored in a declarative knowledge base
that is strictly separated from domain-independent recommendation algorithms. In
order to fully exploit the benefits of a knowledge-based system, the expert knowledge
about the different conversation styles also has to be formalized. This, however, leads
to the problem that the user interface of such an application has to be extremely flexi-
ble and dynamic; during an interactive advisory session, the customer’s characteristics
have to be continuously evaluated based on the answers to different questions, and the
dialog flow as well as the presentation style has to be adapted dynamically.

There are some important requirements to be respected in the design of such a rec-
ommendation system. First, the dialog pages must be robust against changes in the
knowledge base, i.e., the questions to be displayed to the customer, the possible an-
swers, as well as other personalized text fragments have to be dynamically retrieved
from the repository. Second, these dynamic pages have to be simple, comprehensible,
and maintainable by a web developer who has to adapt the layout using standard
HTML and style sheets, such that it is aligned e.g., with the company’s corporate
design. Finally, there have to be adequate tools and intuitive conceptual models, such
that the typically costly process of making the expert’s knowledge explicit is simpli-
fied.

The software framework presented in this paper illustrates a practical application
where several best-practices from the field of Web Engineering (e.g., [5], [6], [7], [8])
are implemented for a specific kind of web applications, i.e., conversational recom-
menders. In the following sections, the main architecture, implementation details, as
well as practical experiences from commercial applications of the system are de-
scribed and a comparison with other approaches in the area is drawn.

Overall Architecture

Figure 1 sketches the overall architecture of the system. All of the required expert
knowledge is stored in a common repository built on top of a relational database sys-
tem ([9], [10]). The ADVISOR SUITE system comprises a set of graphical knowledge
acquisition tools that are used by the knowledge engineer and the domain expert for
modeling the recommendation logic as well as the interaction and personalization
knowledge. The “user characteristics”, i.e., his/her preferences, needs, and wishes are
the main pieces of knowledge which are elicited in an advisory dialog either by direct

questioning the online customer or by indirect reasoning. These characteristics deter-
mine the products to be proposed as well as the interaction and presentation style.

Based on the modeled information about the dialog, e.g., the definition or the dia-
log screens, questions, questions’ styles or dialog sequences, the GUI Generation
Module is used to automate the web page development process. Therefore, this mod-
ule automatically constructs the source code for the corresponding dynamic web
pages by using a template mechanism which is described in a later section.

Run timeDesign time

Advisor Repository

Knowledge Acquisition Tools

JSP

<html>
 <head>
 </head>

</html>

JSP

<html>
 <head>
 </head>

</html>

GUI
Generation

Module

Advisor Suite
Server

Interaction &
Personalization

Agent

HE WLETT
PACKA RD

Web Server
Virtual advisory session

Dynamic Web
pages

Fig. 1. Architecture of the framework

At run-time, the sales advisory application runs on a standard web server. For each
customer session, an Interaction and Personalization Agent manages the interaction
with its client and forwards the user to the correct dialog screens. The agent also com-
municates with a Server Module that implements the core reasoning logic, e.g., prod-
uct recommendation based on the customer’s characteristics. The Server module itself
loads the knowledge from the repository on start-up and also stores information to the
repository, like all interaction data, customer properties, session statistics, and other
information collected by the interaction agent.

Modeling the sales assistance system

When developing an expert system, elicitation and formalization of the expert knowl-
edge are the critical tasks. As such, it is important to have an adequate and intuitive
form of knowledge representation that can be easily understood by domain experts.
The whole advisory process in the ADVISOR SUITE system is driven by the customer
properties which are modeled as variables that can take one or more predefined values
from a given domain. One simple example is the user expertise, i.e., the customer
could be asked for a self-assessment of his knowledge level at the beginning of the
dialog. Corresponding to the variable’s domain, possible values are for instance “be-
ginner”, “advanced”, or “expert”. The customer’s answers (i.e., his profile) conse-
quently influence both the set of products to be recommended as well as the subse-
quent dialog steps, as different questions for experts and beginners could be defined.
Note that in some domains the real user characteristics cannot be acquired based on

self-assessment by direct questioning alone, e.g., when determining the risk class of a
customer in investment advisory. For such cases, ADVISOR SUITE also supports indi-
rect reasoning on customer properties based on expert knowledge.

In this paper, we do not go in detail of the constraint-based recommendation algo-
rithms. Basically, the domain expert defines filtering rules that relate customer char-
acteristics to product properties like “If the customer is a beginner and has no ade-
quate financial background, do not recommend investment products with a high risk”,
an example taken from the investment advisory domain. For modeling purposes, a
classical “if-then” style notation and a high-level constraint language is used. It can
also be understood by non-programmers and entered via a graphical context-aware
editor (Figure 2). The designed language comprises expressions over customer- and
product properties containing arithmetic, relational, logical and set operators.

Fig. 2. Context-aware condition editor

After the application of all filter constraints, possibly no suitable products could
remain. In this case, we use an algorithm based on Hierarchical Constraint Satisfac-
tion [11] for priority-based filter relaxation. Furthermore, in order to increase the
customer’s confidence, the sets of applied and relaxed filters are used to construct an
explanation of the recommendation. Finally, for computing a personalized ranking of
the remaining products that takes the user’s preferences and interests into account, a
standard multi-attribute utility technique (MAUT, [12]) is applied.

The acquisition of the customer characteristics by direct questioning and indirect
reasoning is done in an interactive advisory session. Therefore, these characteristics
are also the starting point for designing the personalized dialog flow. In order to sim-
plify this modeling step, we base it on a generic, conceptual model of a sales advisory
application and a corresponding graphical notation. There were two driving factors in
the design of that conceptual model. First, we have to use a terminology and a nota-
tion that is understandable by domain experts, but still has a defined semantics for
automating the application construction process in later steps. Intentionally, we did
not rely on standard methods for modeling application dynamics like UML State
Diagrams [13] or Petri Nets for representation purposes, because from our experi-
ences domain experts are not acquainted with defined technical terms like “state” or
“transition”. Second, the gap between the model of the application and the resulting
web pages and other components has to be kept small in order to be able to directly
relate changes in the model to changes in the application.

Figure 3 sketches conceptual model of a sales assistance application in a UML
class diagram. The advisory application consists of a set of dialog pages, whereby on

each page a set of questions and their possible answers can be displayed in a given
style, e.g., as radio buttons. Note that these questions and answers can correspond
both to customer characteristics and product properties, i.e., the customer can also
state his requirements on the basis of technical product features. Further, for questions
and answers explanatory texts in multi-lingual versions can be defined. In order to
model the dialog flow, each page has a set of possible successor pages, whereby for
each of them a transition condition over the customer properties can be defined. These
conditions are again modelled using the system’s constraint language with a context
aware editor (see Figure 2) and are evaluated at run-time by the Interaction and Per-
sonalization Agent that determines the next dialog page. Furthermore, the whole dia-
log can be organized in phases, which is typically used to provide the customer feed-
back about the dialog’s progress or additional navigation possibilities.

Transi tion

Condition

Hints page

Advisory Application

Sp eci al page

1
0..n

1
0..n

Explanatio n pag e

...
Resul t page

Product property

1

1..n

1

1..n

Answer

Answertext

Phase

Nam e

1

1..n

1

1..n

consists of

Page

Name

0..n 0..n0..n 0..n

1

0..n

1

0..n 1

0..1

1

0..1

Question

Questiontext
Exp lanation 1 1..n1 1..n

1

1..n

1

1..n

Fig. 3. UML model of an advisory application

In addition to application-specific pages, there are also domain-independent special
pages, like a page where the results are displayed or where the explanations for the
proposal are presented. In most cases, these pages are quite similar for different do-
mains and only differ in the set of product properties to be displayed or in the layout
and positioning of the elements. For instance, one special page is the one where hints
are displayed during the dialog. We allow domain experts to model conditions when
the standard dialog flow should be actively interrupted by the system. Typically, this
is done when the customer’s answers are conflicting, or in situations when an experi-
enced sales assistant would provide additional explanations or hints. This feature is
also commonly used for cross-selling and up-selling purposes. The interruption of the
dialog depends on the current customer’s characteristics and the corresponding condi-
tions that are again evaluated by the Interaction Agent at run-time.

In order to support the domain experts in modeling the interaction flow, graphical
modeling tools are integrated in the ADVISOR SUITE system. Figure 4 shows a screen-
shot of this tool with a simple page flow from the domain of digital cameras.

User interface generation

One of the major goals of the ADVISOR SUITE project was to automate the develop-
ment process for the web application as far as possible. This feature should allow us
to reduce the overall development and maintenance times, guarantee consistent high
quality of the web application, and provide rapid prototyping facilities without the
need for highly skilled web developers.

Fig. 4. Dialog modeling tool

The approach taken in the ADVISOR SUITE system relies on two basic techniques.
First, we make extensive use of Custom Tags [14] in the generated dynamic Java
Server Pages (JSP)1. Custom Tags are syntactically similar to standard HTML tags
and can be included in the application’s HTML code. Internally, however, they im-
plement arbitrary application-specific functionality and behavior. This technique
strictly separates static HTML code from Java code or other scripting code that de-
termines the dynamics of the page. Therefore, one consistent “programming” model is
used.

The listing fragment in Figure 5 shows how custom tags are included in standard
HTML code. In this example, predefined tags are used to display a question corre-

1 see http://java.sun.com

sponding to a customer characteristic together with the possible answers in an HTML
table element. Internally, the custom tag evaluates the current customer’s characteris-
tics and retrieves the personalized question text and the possible answers that are
defined in the knowledge base and displays the corresponding information, e.g. in the
language of the current customer. The tags also transparently manage the communica-
tion with the Interaction Agent, e.g. for steering the dialog flow. The implementation
details of the tags, however, are completely hidden for the web developer. The ADVI-
SOR SUITE framework provides such tags for most of the functionality typically re-
quired in sales advisory applications, e.g., displaying the result products, explana-
tions, or dialog hints. Note that using this technique, no changes in the HTML code
are needed, if the contents in the knowledge base change.

The second mechanism exploited for automated application development is based
on page assembly and parameterization using adaptable templates. This assembly task
is performed by the GUI Generation Module after maintenance activities on the
knowledge base, e.g., when a new dialog page is inserted into the page flow. In our
framework, each dialog page consists of a set of predefined areas like headers, navi-
gation area, or an area for displaying a question (see Figure 6). For these areas, small
HTML templates with no more than thirty lines of HTML code are provided, that can
be adapted by the web-developer, in case that the style or positioning has to be
changed or additional HTML content should be included in the page.

Fig. 5. HTML fragment with custom tags

In fact, the listing in Figure 5 is such a template for displaying a question with ra-
dio buttons for the answers, whereby the radio buttons are arranged vertically in table
rows. A typical layout change in the template, for instance, would be a horizontal
arrangement of the radio buttons, which only causes a small change in the template.
Nevertheless, the placement of questions on pages as well as the display style like
using radio buttons is defined in the process modeling tool without changes in the
templates. The GUI Generation Module then generates one Java Server Page for each
page defined in the conceptual model and replaces the placeholders (e.g., $QUES-
TION_NAME$ in the example) with correct values.

The described template mechanism is robust against repeated generation of pages
after maintenance activities, as the changes are done in the templates. In cases when
very specific functionality that cannot be generalized to all pages has to be imple-
mented, the generated but still readable pages can be edited. On repeated generation
of the application, the changed page can be prevented from being overwritten by the

Generation Module. Note that we also make extensive use of predefined Cascading
Style Sheets (CSS) within the standard templates, which allows us adapt the presenta-
tion style like layout of the elements as well as positioning independently from the
knowledge base content.

Implementation and practical experiences

The whole ADVISOR SUITE framework including the knowledge-based recommenda-
tion and personalization engine was built using Java and HTML technology and runs
on standard web servers and relational database management systems. The integration
of external data sources like pre-existing electronic product fact sheets can be done on
the basis of a Java database connectivity (JDBC) interface or an XML-based data
exchange format.

�������

����	
�

�
	�

�	��

�
	�

�����	��

�����

���	
��������

��	������������

�������������	���		��

���������������������

�����������
	�

Fig. 6. Structure of a generated page

From the point of view of development, we experienced that the consistent use of
technologies significantly increases the quality of the software and the interoperability
between the individual components. This holds both for the internal quality of the
framework as well as for the generated sales advisory web applications. In order to
avoid maintenance problems in the highly interactive web application, we also mini-
mized the usage of client-side scripting technology like JavaScript. Furthermore,
typical performance issues that potentially arise in Java-based applications are ad-
dressed by extensive data caching. In addition, a pre-compilation mechanism for fast
processing of filtering rules and personalization conditions increases performance. In
a practical setting with an installation on one of Austria’s largest e-commerce web

sites2, around twenty thousand full advisory sessions in the first few days did not
cause any performance problems, whereby only standard hard- and software for the
Web server was used.

Besides increased customer satisfaction by the value adding service, companies of-
fering online sales assistance systems also profit from the new information provided
by the system. As mentioned before, the ADVISOR SUITE framework collects informa-
tion gathered during the customer dialog, e.g., interaction data, session data, or cus-
tomer characteristics. Thus, companies can learn about their customers and their pref-
erences and desires, which is necessary for a successful Customer Relationship Man-
agement (CRM, [15]). As an example, the information about the customers’ self-
assessment of the expertise can be useful in order to tailor the online service to this
target group. On the other hand, the evaluation of click-behavior of the online users
can be helpful to improve the advisory application itself, e.g., it is possible to deter-
mine if the dialogue is terminated by the users prematurely. Such an analysis can be
supported by advanced Web Mining techniques [16], which will be part of our future
work.

Up to now, several commercial sales assistance systems were built with the ADVI-
SOR SUITE framework, whereby the application areas range from technical products
like digital cameras or video projectors, to complex domains like investment advisory
in private banking, as well as to “quality and taste” domains like fine cigars or vaca-
tion planning. Our experiences show that the overall development times (and the
corresponding costs) for the sales assistance application are extremely short. For most
domains, the initial setup of the knowledge base including the basic design of the
dialog can be done in very few workshop days with the help of a knowledge engineer.
Although the provided development tools were typically not directly used by the
domain expert for the initial setup and prototyping phase, they served as a good basis
for communication in these phases. Later maintenance activities, however, required
the help of the knowledge engineer only in few cases.

The development times for the final web user interface varied with the specific re-
quirements on the layout that was mostly determined by the existing web site. In some
cases, only minor changes in the generated application’s layout were required, in
other cases more efforts had to be spent for the implementation of domain-dependent,
specific application-behaviour or for a smooth integration into an existing web site.
Our experiences show that the realization of the advisory service in a “wizard-style”
separate application window was well appreciated by the users mostly because the
recommendation process can be experienced as a easy-to-follow and focused task.
From a technical point of view, easy integration of our system into existing web sites
is ensured by the consistent use of standard technologies.

In all cases, however, we found that the maintenance or extension of the generated
pages was no problematic issue and could be done by a web developer without ad-
vanced programming skills. In fact, by using the described Custom Tags and standard
HTML, the generated pages remain small and readable and the developers soon un-
derstand how the pages are assembled. Note that specific extensions for a customized
behaviour of the application can be incorporated into the application by adding arbi-
trary Java Server Pages code to the generated pages or the templates, whereby also an

2 with respect to unique daily visits, http://www.geizhals.at

Application Programming Interface (API) for the communication with the advisory
server is provided.

As a result, the quality of the web pages of the application remained at a high level,
as many tasks like maintenance of multi-lingual version, management and automatic
logging of user inputs in the HTTP session, or communication with the web server are
already automated. Moreover, the given structure of the generated web application
guarantees that the clear separation of the underlying model, the page flow control, as
well as the presentation style with style sheets in the sense of the Model-View-
Controller concept [17] is consequently obeyed.

Related work

Applications that are built with ADVISOR SUITE belong to the class of conversa-
tional recommender systems (see, e.g., [3] and [4]) which have the advantage that the
user can be guided in the decision process in a personalized dialogue. When com-
pared to the work of [4], differences can be found for instance with respect to the
possible complexity of dialogues, which is somewhat more restricted in our work.
Bridge [4], for instance, focuses on a formal "dialog grammar", drawing ideas from
Conversational Analysis for defining conversational dialogs. Although more complex
dialogs can be modeled, we argue that this formal, domain-independent approach is
problematic with respect to knowledge acquisition, because it is harder to understand
for domain experts. In addition, when the dialogs become more "natural", some sys-
tems suffer from the problem that end users attribute to the system more intelligence
than is warranted. Overall, in this paper we have mainly focused on the engineering
and maintenance aspects of conversational recommender systems than on the person-
alization or recommendation functionality itself. Some functional features of our
system, however, like the generation of adequate explanations which are made possi-
ble by the consistent knowledge-based approach, cannot be found in other conversa-
tional recommender systems.

In the field of Web Engineering, several approaches have been presented over the
last years that aim at applying state-of-the-art Software Engineering practices to the
development of such web applications, or extend such common methods to fit the
specific requirements of these applications. The main goal is to support a better de-
sign, structuring, and understanding of data-intensive web applications by the use of
abstractions, corresponding conceptual models, and graphical notations.

The Web Modeling Language (WebML) ([5],[18]3), for instance, defines a data
model that extends Entity/Relationship diagrams to capture relevant entities and rela-
tionships in the domain; a hypertext model, that specifies the content units that make
up the page; and links that express navigation possibilities. Another approach,
HDM/OOHDM (Object Oriented Hypermedia Design, [6]) uses an extended UML
[13] notation to model the data view and introduce navigational classes (nodes, links
and access structures) and navigational contexts for the critical part of navigation
modeling in web applications in order to separate it from data and interface design. In

3 see also http://www.webml.org

recent work (e.g., [7]), an even more general architecture for building different fami-
lies of web applications is introduced. Furthermore, some existing modeling methods
are extended in order to support the conceptual design of web applications, for in-
stance UML using stereotypes [19] or the OO-Method [8]. The main focus of these
approaches is a smooth integration of web application specific concepts into a general
software production process, which enables automatic generation of parts of the code
on the basis of the conceptual models.

Our work differs from the above-mentioned approaches insofar, as we do not aim
at providing a comprehensive methodology for developing web applications in gen-
eral, but rather limit ourselves to conceptual modeling and development support for a
specific family of applications in the sense of [7], i.e., web-based sales assistance
systems. Nonetheless, several concepts of such general Web Engineering approaches
are instantiated in a particular form in the ADVISOR SUITE system. First, there is a
clear separation of the different aspects of the application, whereby the application is
not data-intensive, but knowledge-driven. Therefore, the underlying model is not a
data model in terms of a class diagram describing data structures, but rather a knowl-
edge-base consisting of expert rules over problem variables. The model of the appli-
cation’s dynamics – the dialog flow – is quite similar to the above-mentioned ap-
proaches and is in our case based on a model of the application’s web pages and navi-
gational links between them. In contrast to general approaches, however, we did not
chose a technically oriented notation like state diagrams, but we utilize a problem-
oriented, proprietary notation for the target users, i.e. domain experts, who usually
have not sufficient expertise in standard conceptual modeling techniques.

The separation of the page content and its presentation in our framework is very
rigid. In the modeling phase only the phases, pages, and the questions to be displayed
as well as the basic presentation template is chosen. The actual layout and presenta-
tion style is determined by the style sheets and is not influenced by changes in the
dialog flow. Nevertheless, the limitations of the Model-View-Controller concept in
the context of interactive hypermedia techniques [7], where the navigational logic is
in many cases mixed with interface layout, are addressed by the use of a knowledge-
based, generic controller component that dynamically computes navigational links
and page successor relations in the context of the current user’s characteristics. The
usage of one generic dialog model instead of several contextual models also allows us
also to keep it at a manageable size.

Because of their targeted level of generality, the automated page and application
generation mechanism of ADVISOR SUITE can not be found in the general approaches.
However, compared to the WebML approach, the basic structure of the dialog pages
can be seen as part of an instance of the hypertext model that pre-defines the individ-
ual units of which a page consists. The UML model describing the general structure
of the generated application (Figure 3) can be regarded as an instance of a conceptual
model or a typical pattern of a sales assistance application, and could also be ex-
pressed in the notation of [18] or [19].

In addition to the work of existing approaches from the Web Engineering field, we
also see extended tool support during the whole development cycle as an important
issue. The modeling tools provided in the ADVISOR SUITE framework enables rapid
prototyping cycles during the analysis (knowledge acquisition) phase, which has
shown to be extremely helpful. Moreover, the quality of the resulting applications can

be increased by the usage of properly engineered HTML templates and custom tags.
Finally, the presented framework also provides basic tool support for HTML-editing
and resource management consistently into the web development process, as it is
explicitly mentioned as a focus of the work in [8].

Some correspondence can also be found to the field of Domain-Specific Modeling
– DSM ([20], [21], [22]). In contrast to general modeling languages like UML, do-
main-specific modeling languages are based on concepts and the specific semantics of
the particular application domain and serve as starting point for automated code gen-
eration. Beside that increased automation of the software development process, these
approaches have also the advantage that the domain-specific notation and terminology
can be more easily understood by the domain experts. The domain-oriented modeling
techniques and the code generation capabilities of ADVISOR SUITE can be seen as
such an DSM approach that enables domain experts to express their knowledge on a
high abstraction level that can be exploited to generate a executable web-based appli-
cation.

Conclusions

In this paper we have described a framework for rapid development of maintain-
able conversational recommenders. We follow a consistent knowledge-based ap-
proach both for the core recommendation task as well as for the design of a web inter-
face that has to support complex and personalized user interaction. The usage of
graphical knowledge acquisition tools, a conceptual model of the application, and
automated web page generation based on templates allowed us to significantly reduce
development efforts, whereby also the internal quality of the generated web applica-
tion can be kept at a high level.

Compared with popular approaches from the area of Web Engineering, the work
presented in this paper in many facets can be regarded as an implementation of best-
practices from different methods with a difference of a knowledge-driven underlying
problem and an end-user oriented notation and terminology.

Future work will include data mining techniques to be able to better exploit the in-
formation collected during the customer interactions, both for supporting CRM-
related analysis tasks as well as to increase the quality of the recommendation process
by analyzing user behavior. Further research will also be done towards the generaliza-
tion of the presented techniques for dialog and navigation modeling for other applica-
tion domains that require personalized user interactions.

REFERENCES

[1] Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
and Zanker, M.: A Framework for the Development of Personalized, Distributed Web-
Based Configuration Systems, AI Magazine, 24 (3), Fall 2003, 93-110.

[2] Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
and Zanker, M.: Personalizing on-line configuration of products and services, Proceed-
ings 15th European Conference on Artificial Intelligence, Lyon, France, IOS Press, 2000.

[3] Thompson, C.A., Göker, M.H., Langley, P.: A Personalized Systems for Conversational
Recommendations, Journal of Artificial Intelligence Research, 21, 2004, pp. 393-428.

[4] Bridge, D.: Towards Conversational Recommender Systems: A Dialogue Grammar Ap-
proach, Procs. of the Workshop in Mixed-Initiative Case-Based Reasoning, Workshop
Programme at the Sixth European Conference in Case-Based Reasoning, pp. 9-22, 2002.

[5] Ceri, S., Fraternali, P., and Matera, M.: Conceptual Modeling of Data-Intensive Web
Applications. IEEE Internet Computing, 6 (4), pp. 20-30.

[6] Rossi, G., Schwabe, D., Esmeraldo, L., Lyardet, F.: Engineering Web Applications for
Reuse, IEEE Multimedia, 8 (1), 2001, pp. 20-31.

[7] Jacyntho, M.D., Schwabe, D., Rossi, G.: A Software Architecture for Structuring com-
plex Web Applications, Journal of Web Engineering, 1 (1), October 2002, pp. 37-60.

[8] Gomez, J., Cachero, C., Pastor, O.: Extending a Conceptual Modelling Approach to Web
Application Design, Proc. of the 1st International Workshop on Web-Oriented Software
Technology, Valencia, Spain, June, 2001.

[9] Jannach, D.: Advisor Suite – A knowledge-based sales advisory system, Proc. of the 16th
European Conference on Artificial Intelligence – 3rd Prestigious Applications Intelligent
Systems Conference, Valencia, Spain, 2004, pp. 720-724.

[10] Jannach, D., Kreutler G.: Building on-line sales assistance systems with ADVISOR
SUITE, Proc. of the 16th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE 04), Banff, Canada 2004, pp. 110-116.

[11] Schiex, T., Fargier, H., Verfaille, G.: Valued Constraint Satisfaction Problems: Hard and
Easy Problems, Proc. of International Joint Conference on Artificial Intelligence
(IJCAI’95), Montreal, Canada, 1995, pp. 631-639.

[12] von Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research, Cam-
bridge University Press, Cambridge, UK, 1986.

[13] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Man-
ual, Addison-Wesley, 1998.

[14] Goodwill, J.: Mastering JSP Custom Tags and Tag Libraries, Wiley Publishers, 2002.
[15] Berson, A., Smith, S., Thearling, K.: Building data mining applications for CRM.

McGraw-Hill, New York, 2000.
[16] Kosala, R., Blockeel, H.: Web mining research: A survey. SIGKDD Explorations 2 (1),

2000, pp. 1-15.
[17] Krasner G.E., Pope S.T.: A Description of the Model-View-Controller User Interface

Paradigm in the Smalltalk-80 System. ParcPlace Systems Inc., Mountain View, 1988.
[18] Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling

Language for Designing Web Sites, Computer Networks, 33, 2000, Elsevier, pp. 137-157.
[19] Conallen, J.: Building Web Applications with UML, Addison Wesley, Reading, 2000.
[20] Gray, J., Rossi, M., Tolvanen, J.-P. (Eds.): Domain-Specific Modeling with Visual Lan-

guages, Journal of Visual Languages & Computing 15 (3-4), June-August 2004, pp. 207-
330.

[21] Tolvanen, J.-P., Kelly, S.: Domänenspezifische Modellierung, ObjektSpektrum, 4/2004,
pp. 30-35.

[22] MetaCase Corp.: Domain-specific modeling: 10 times faster than UML. White Paper,
available online at http://www.metacase.com/, August 2004.

