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Abstract.  Adequate maintenance and debugging support is a key pre-requisite 
for successful industrial application of AI technology. Consistency-based 
diagnosis techniques have shown to be a promising approach for detecting 
faults in declarative knowledge bases in the domain of product configuration. 
We show how the efficiency of the basic diagnostic reasoning approach that 
uses (partial) configurations as test cases can be enhanced by exploiting given 
structures in these knowledge bases and by iteratively focusing on potentially 
faulty parts of the knowledge base.  

1 Introduction 

Knowledge-based product configuration has been a prominent application field for 
declarative knowledge representation for the last decades and with the new sales 
channels of Electronic Commerce this technology is gaining even more importance 
due the increasing demand for configurable and customizable products that are 
marketed over the Web. From the perspective of configuration technology, 
declarative approaches, e.g., based on Constraint Satisfaction, have shown to be 
superior to early procedural or rule-based approaches and these techniques are also 
employed in commercial product configuration systems ([7],[13]).  Nonetheless, 
despite the declarative way of describing the configuration knowledge like the 
available components and legal product constellations, it shows that the major costs of 
running a product configurator lie in the validation and maintenance phase; these 
costs are typically caused by the increased complexity of the configurable products 
(and the corresponding knowledge bases) as well as by the frequent change rates in 
the structure and parameters of the products. Moreover, commercial configuration 
systems are typically optimized for solving the configuration problem itself efficiently 
but have their limitations when it comes to debugging, i.e., finding the real cause of 
an unexpected behavior of the configurator.  

In the approach described in [5] it was shown how techniques from the field 
model-based diagnosis can be employed to detect faults in declarative knowledge 
bases by providing partial configurations as test cases. When using this framework, 
the knowledge engineer validating a recently changed knowledge base provides 



positive and negative test cases, whereby the positive examples should be consistent 
with a correct knowledge base and negative examples should be rejected by the 
configurator. Note that the positive examples can correspond to valid configurations 
from previous configuration runs before the maintenance activities and should still be 
consistent with the updated knowledge base. In cases where the configurator with an 
updated knowledge base behaves in an unexpected way by, e.g., rejecting an 
configuration example that should be consistent according to the intention of the 
knowledge engineer, model-based diagnosis techniques are used to find diagnoses, 
i.e., sets of assumedly faulty statements from the knowledge base that explain the 
discrepancy between the expected behavior and the observed one. 

One of the key influencing factors for the diagnostic reasoning task from [5] lies in 
the size of the conflict sets which have to be provided by the theorem prover and are 
used to focus the search process. However, if we want to apply the diagnosis 
framework in real-world applications and therefore use specialized industrial 
configurators as core reasoner, we face the fact that their explanation facilities are 
limited and no conflict generation is available. 

In this paper we show how we can utilize given hierarchical abstractions that are 
typical for configuration knowledge bases to significantly enhance the efficiency of 
the diagnostic reasoning process: this is achieved by an iterative process, where the 
knowledge-base is diagnosed at different levels of granularity. After giving a short 
example and reviewing the basic concepts from [5], we will describe the extensions 
needed for hierarchical diagnosis and discuss related work in the area. 

2 Example 

We will use a small but typical configuration example fragment from the 
telecommunication equipment domain for demonstration purposes, where the problem 
is to plug cards of different types onto a frame (see [6] ).  

Using first order logic sentences for knowledge representation [5] the description 
of the available components is as follows: 

types = {frame, cpu-1, cpu-2, sm-1, sm-2}; 
ports(frame) = {cp1,cp2,smp1,smp2}. 
ports(cpu-1) = {framep}.  ports(cpu-2) = {framep}.   
 ports(sm-1) = {framep}.  ports(sm-2) = {framep}. 
 

For the constraints and the configuration results we use the predicates type(c,t) that 
associates a component instance with one of the given types and conn(c1,p2,c2,p2) 
for describing connections between components c1 and c2 over the ports p1 and p2, 
respectively. Note that connections are symmetric and one port can be connected to 
exactly one other port. In the example, the following constraints have to hold: 

"CtF1: If there is a cpu-1 on cp2, there must be a sm-1 on one of the switching 
module ports.", more formally 
∀C,F : type(F,frame) ∧  type(C,cpu-1) ∧ conn(F,cp2,C,framep) ⇒  
    ∃ (S,P): type(S,sm-1) ∧  conn(F,P,S,framep) ∧ P ∈ {smp1, smp2}. 



"CtS1: If there is a switching-module sm-2 on smp1 there must be also one sm-2 on 
smp2." 

"CtC1: If there is a CPU of any type connected to any CPU port, at least one 
switching module of type sm-1 or sm-2 must be connected to smp1 or smp2." 

"CtC2: A CPU of type cpu-2 on port cp1 requires switching modules of type sm-2 
on both ports smp1, smp2." 

"CtC3:A CPU of type cpu-1 on cp2 requires a CPU of the type cpu-2 on cp1." 

Let us assume, that CtF1 is faulty and too restrictive, because also switching 
modules of type sm-2 should be allowed. This situation came about because sm-2 was 
a type newly introduced to the knowledge base and CtF1 was not maintained 
correctly. The user provides a positive example with one cpu-1 and a switching 
module sm-2: 

e+ = {∃ F,S,C: type(F,frame) ∧ type(S,sm-2) ∧  
          type(C,cpu-1) ∧ conn(F,cp-2,C,framep) ∧  
          conn(F, smp-1, S, framep)}. 

Note, that the partial example cannot be completed to a correct configuration (see 
[5] for the usage of negative examples). Following the consistency-based approach 
from [5] the minimal conflicts [16] (sets of constraints causing a contradiction with 
the example)  

{CtF1 , CtS1}  and {CtF1 , CtC3 , CtC2} 
induce the minimal diagnoses for the unexpected behavior: 

{CtF1} {CtS1, CtC3} {CtS1,  CtC2.} 
Note, that CtC1 is not contained in any minimal conflict set and that the assumption 

of having minimal conflict sets available for HS-DAG generation ([10],[16]) is very 
strong when using commercial configurators, based on techniques like e.g., Constraint 
Satisfaction. Unfortunately, the complexity of finding diagnosis without the focusing 
effect of (minimal) conflict set is high, because overlaps in the conflict sets minimize 
benefits from techniques like conflict reuse. 

In this paper we propose adopting a hierarchical approach where we diagnose the 
knowledge base first on a coarse level with smaller search complexity by examining 
whole groups of constraints together. A natural grouping for our example is given by 
the components the constraints relate to (indicated by the constraint names). If we 
assume all constraints of a group to be faulty if the group is considered faulty, the 
minimal diagnosis for the example will be 

{frame} and {sm, cpu} 
With only three diagnosable components at the most abstract level (i.e., the 

constraint groups frame, sm, and cpu), the search complexity during HS-DAG 
generation is extremely low. In a next step, the knowledge engineer, can decide to use 
the result as a pointer to a faulty group or refine the diagnoses to the next level. When 
refining one diagnosis to the next level, the contained faulty groups are replaced by 
their elements; groups that were not assumed to be faulty are still treated as one 
component, which reduces the number of diagnosable components. 



3 Consistency-based diagnosis of configuration knowledge bases 

This section shortly recapitulates the basic definitions from [5]. In their general 
framework, a configurator knowledge base consists of a set of logical sentences DD 
describing available component types, their attributes and connection points as well as 
constraints on legal product constellations [14]. Configuration problems are solved 
according to specific user requirements SRS. A configuration result can be described 
by means of a set of ground literals containing information on component instances, 
attribute values and connections. The set of possible literals is contained in a set 
CONL.  
Definition: (Configuration problem): A configuration problem is described by a 
triple (DD,SRS,CONL), where DD and SRS are sets of logical sentences and CONL is 
a set of predicate symbols. 
DD represents the domain description, SRS the user requirements for a configuration 
problem instance. A configuration CONF is described by a set of ground literals 
whose predicate symbols are in CONL. ο 
Definition (Consistent configuration): Given a configuration problem 
(DD,SRS,CONL), a configuration CONF is consistent iff DD ∪ SRS ∪ CONF is 
satisfiable.  
To ensure the completeness of a configuration, additional formulae for each symbol in 
CONL have to be introduced to CONF, e.g., type(X,Y) ⇒ ( type(X,Y) ∈ CONF). 
We denote the configuration CONF extended by these axioms with CONF . (For a 
detailed exposition, see [5]). 

Definition (Valid and irreducible configuration): Let (DD,SRS,CONL) be a 
configuration problem. A configuration CONF is valid iff DD∪ SRS ∪ CONF  is sa-
tisfiable. CONF is irreducible if there exists no other valid configuration CONFsub 
such that CONFsub ⊂ CONF.  

Definition (CKB-Diagnosis Problem): A CKB (Configuration Knowledge Base) 
Diagnosis Problem  is a triple (DD,E+,E−) where DD is a configuration knowledge 
base, E+ is a set of positive and E− a set of negative examples given as sets of logical 
sentences. We assume each example on its own to be consistent.  

Positive examples are (partial) configurations, which should be accepted by the 
configurator, whereas negative examples should be rejected. Given these example sets 
and the domain description cause an inconsistency, a diagnosis corresponds to the 
removal of possibly faulty sentences restoring the consistency. In addition, if a 
negative example is consistent with the knowledge base, we have to find an extension 
to DD which restores inconsistency for all such negative examples. 
Definition (CKB-Diagnosis): A CKB-Diagnosis for a CKB-Diagnosis Problem 
(DD,E+,E−) is a set S ⊆ DD such that there exists an extension EX, where EX is a set 
of logical sentences, such that 

 DD - S ∪ EX ∪ e+ consistent ∀ e+ ∈ E+ 
 DD - S ∪ EX ∪ e- inconsistent ∀ e− ∈ E− .  

 



From here on we refer to the conjunction of the negated negative examples as NE, i.e., 
NE = ∧e

−
 ∈ E

− (¬ e−). 
Proposition: Given a CKB-Diagnosis Problem (DD, E+, E−) , a diagnosis S exists iff 

 ∀e+ ∈ E+: e+ ∪  NE is consistent.  
Proof. see [5]. 

Corollary: S is a diagnosis iff   
   ∀e+ ∈ E+: DD − S ∪ e+ ∪  NE is consistent.  

4 Hierarchical structures in the knowledge base 

In this section we will show how we can impose a hierarchical (tree) structure on the 
contents, i.e., the individual sentences, of a typical configurator knowledge base. The 
inner nodes of the tree correspond to named groups of constraints; the leaf nodes are 
the individual (original) constraints. Such a hierarchical structure T can be expressed 
using the following functions: sons(n)  returns the direct successors of a node n in the 
tree, i.e., the elements of a named group n (and ∅ if n is a leaf node). We assume a 
group root to exist in the tree representing the root of the tree. The leaf nodes of the 
tree are the individual sentences from DD. A function leaves(n) returns all leaf nodes 
for a given node n which are under n (and n itself if it is already a leaf node). Finally, 
all diagnosable constraints from DD have to be contained in the tree. Note, that the 
idea for the following framework is that we consider all constraints of a group to be 
potentially faulty, if at least one constraint of the group is faulty. 
Definition (Hierarchy tree): A hierarchy tree T for a configuration knowledge base 
DD is a tree, where 

the leaf nodes are named elements from DD, 
a node "root" represents the root element of the tree, 
inner nodes represent named constraint groups from the knowledge base, and 
the names all leaf nodes and inner nodes appear exactly once in the tree.  

For hierarchical diagnosis we extend our notion of CKB-Diagnosis in a way that 
also constraint group names can appear in the diagnosis. We define a function 
successors(n) to be returning the set of all direct and indirect successors of a node n in 
the tree (and ∅, if n is a leaf node). The function allLeaves(N) defined on a set of 
nodes returns the union of leaves(n) applied to every n∈ N.  
Definition (Abstract CKB-Diagnosis): An Abstract CKB-Diagnosis for a 
configuration problem (DD,E+,E−) and a hierarchy tree T is a set S of nodes of T, 
such that there exists an extension EX, where EX is a set of logical sentences, such 
that: 
  DD− allLeaves(S) ∪ EX ∪ e+ consistent ∀ e+ ∈ E+, 
  DD− allLeaves(S) ∪ EX ∪ e− inconsistent ∀ e− ∈ E− .  

Definition (Minimal Abstract CKB-Diagnosis): An Abstract CKB-Diagnosis S for 
(DD,E+,E−) and T  is said to be minimal, if no subset S' ⊂ S is an Abstract CKB-
Diagnosis.  



In order to ensure that by using this form of abstraction for different levels no 
diagnostic information is lost, we have to show that every abstract level diagnosis has 
a corresponding diagnosis at a more detailed level. Soundness and completeness 
properties of the hierarchical approach can be found in [12]. 

5 Diagnosing the knowledge base with abstraction context 

Given the above definitions, we now extend the standard hitting-set algorithm for 
model-based diagnosis to calculate (minimal) diagnoses at the different levels. In the 
standard algorithm ([[10],[[16]), conflict sets are used for focusing purposes. For the 
domain of diagnosis of knowledge bases [[5], a conflict set is defined as follows:  
Definition (Conflict Set): A conflict set CS for (DD, E+,E−) is a set of elements from 
DD such that  
     ∃ e+ ∈  E+: CS ∪ e+ ∪  NE is inconsistent.  

In order to support calculation of minimal diagnosis at different levels of abstraction, 
we extend the definition, such that also constraint groups can appear in a conflict set. 

Definition (Abstract Conflict Set): An abstract conflict set for (DD,E+,E−) and a 
hierarchy tree T is a set ACS of elements from T such that  
   ∃ e+ ∈  E+: allLeaves(ACS) ∪ e+ ∪ NE is inconsistent.  

For the computation of minimal diagnoses for configurator knowledge bases, the 
HS-DAG algorithm from ([[10], [[16]) is adapted as follows: a node n in the DAG is 
labeled by a conflict set ACS(n); edges leading away are labeled by elements s ∈ 
ACS(n).  The set of edge labels on the path from the root to a node n is referred to as 
H(n). In addition, for each node n a set CE(n) of consistent positive examples is 
stored, knowing that once an example is already consistent it will not become 
inconsistent after further removal of constraints. Since a node can have multiple direct 
predecessors [[10] - referred to as preds(n) - we combine the sets CE  from all direct 
predecessors for such a node. 

According to the idea of iteratively substantiating abstract diagnoses following the 
hierarchical structure of the problem, we will initially compute a set of high-level 
diagnoses, which can then be refined to a more detailed level. Consequently, the 
diagnostic algorithm has an additional input parameter (context) besides the problem 
description and the examples, i.e., an abstract diagnosis that was already computed on 
a higher abstraction level. For the calculation of diagnoses on the next level of detail, 
the constraint groups from the higher-level diagnosis are replaced by their successor 
nodes according to the hierarchy. Accordingly, given an abstract diagnosis AD as 
context, the diagnosable components (in terms of model-based diagnosis typically 
denoted as COMPS) for the refined diagnoses are given as follows:  
• If AD = ∅, only elements from sons(root) can be contained in the diagnoses. 
• If AD ≠ ∅, we have to take a special set of nodes into account for the next 

refinement step: a) the leaf nodes from AD, and b) for each constraint group in 
AD, we have to compute the path of that element to the root of the hierarchy tree. 



Given the set of nodes that are contained in one of these paths, we have to 
compute the union of all direct successors of these nodes. 

Note, that we have to take these direct successors along the abstraction hierarchy 
into account for the next-level diagnosis, since additional constraint groups leading to 
minimal diagnoses can appear in the detail-level diagnoses, which were hidden by the 
minimality criterion at some abstract level. These special cases of hidden diagnoses 
are explained in more detail in [12]. 
 
Algorithm 1: Diagnosis in abstraction context (schema) 
In: (DD,E+,E−), T, an Abstract Diagnosis AD 
Out: a set of refined diagnoses RD 
(1) Use the hitting set algorithm to generate a pruned HS-DAG D for the collection F 

of abstract conflict sets for ((DD,E+,E−), T, AD). Compute the DAG in breadth-
first manner in order to generate diagnoses in order of their cardinality. 

(a) Every theorem prover call TP(DD − H(n), E+ − CE(preds(n)), E−, T, AD) at a    
node n tests whether there exists an e+ ∈ E+ such that there is an inconsistency. 
In this case an (abstract) conflict set is returned, otherwise it returns ok. 

(b) Set CE(n) to be the set of examples found to be consistent in the call to TP   
union the already consistent examples at the direct predecessors of n. 

(2) Return {H(n) | n is a node of D labeled by ok}. 

6 Computing all minimal diagnoses  

We propose an iterative approach starting with a high-level diagnosis that can be 
computed efficiently. The user can decide to stop at this level and focus on some 
group(s) of constraints or can refine these results to a more concise level. In the 
following, an algorithm is presented where a tree with nodes labeled with sets of 
diagnoses is generated, where at each successor node one of the diagnoses of the 
parent is refined. First, an initial set of top-level diagnoses (in context root of 
hierarchy tree T) is generated. Then the tree is generated in breadth-first manner, 
where for each diagnosis of the parent still containing a constraint group, a child node 
is generated and diagnosis is performed in the context of that diagnosis. Note that the 
node is only refined if the considered diagnosis is not already somewhere else in the 
tree. The algorithm ends, if no more nodes can be refined. Furthermore, if we are only 
interested in leading diagnoses, the search can be limited, e.g., to a given cardinality. 
The usage of the standard diagnosis algorithm guarantees that the computed diagnoses 
are correct and minimal. Furthermore, the result of every refinement step 
characterizes the candidate space. These candidate spaces include all minimal 
diagnoses. It follows, that no minimal diagnosis is excluded during refinement.  

 
Algorithm 2: Iterative refinement of diagnoses(sketch): 
rootnode_diagnoses = diagnose(DD,E+,E−, T, ∅) 
set E+ = E+ − {e+ ∈ E+| e+ consistent with DD} 
:label refine 



 refinable = set of diagnoses from current leaf nodes  
       containing constraint groups. 
if refinable = ∅  goto :end; endif 
forall d ∈  refinable 
   calculate diagnosis d' = diagnose(DD,E+,E−,, T,d)  
   if d'  not already in tree 
      create child node for d labeled with d' 
   endif 
endfor 
goto :refine 
:label end 

(frame)(cpu, sm)

(CtS1, CtC3) (CtS1, CtC2) (CtF1)(frame) (cpu, sm)

Not refinable Redundant
(already in tree)

diagnose(DD,E+,E– , T, ∅ )

diagnose(DD,E+,E–, T,{frame})diagnose(DD,E+,E–, T,{cpu,sm})

 
 

Fig. 1 Tree of diagnoses for example problem 

Implementation:  A prototype diagnosis system was implemented on top of ILOG's 
C+ Configurator [13] libraries whereby the used library version does not support the 
generation of (minimal) conflict sets. Our first results showed that the hierarchical 
approach outperforms the flat approach from [5] in most test cases with larger 
knowledge bases (with about hundred types of generic constraints and component 
types and hundreds of constraint instances). As a result, even these more complex 
problems can be solved within an acceptable time frame of a few seconds. For more 
details on the implementation and an analysis of complexity issues, see [12].  

7 Related work 

Model-based diagnosis techniques were initially developed for the identification of 
faults in physical devices, e.g., electronic circuits. Later on, these techniques were 
adopted for diagnosis and debugging of software, e.g., logic programs [4], hardware 
designs specified in VHDL [9], and overconstrained Constraint Satisfaction Problems 
[2]. Our work extends the work of [5] by exploiting hierarchies for consistency-based 
diagnosis of configuration knowledge bases. The usage of hierarchies for the 
diagnosis task has been discussed in various application areas of model-based 
diagnosis (e.g., [8],[11],[15],[17]). Our approach mostly corresponds to what is called 
structural abstraction (vs. behavioral abstraction) and aims at a more efficient 



diagnosis process. One of the important problems is to have the information on the 
hierarchy available at each abstraction level (causing additional modeling effort). For 
the case of debugging of configuration knowledge bases, however, the hierarchical 
abstraction has a good correspondence to the configurable artifact. Changes to the 
product catalog are usually applied to sets of modules (configuration components) 
leading to a small set of effectively affected components.  

In [1], it was shown that when modeling a system at different levels of abstraction 
(independently) for general diagnosis problems there may be situations where 
diagnoses at a detailed level do not have a correspondence to a diagnosis on a more 
abstract level such that diagnostic information may be lost. This phenomenon cannot 
appear in our approach, because at each level, the system's "behavior" (consistency 
checks) is always analyzed on the most detailed level. 

[11] describes hierarchical diagnosis based on value propagation and with XDE an 
extension of the ATMS approach. Our approach is similar in the way structural 
decomposition is applied. However, our goal was to integrate configuration engines 
(e.g., based on generative constraint satisfaction) and diagnosis. The approach of [16] 
offers an appealing way for this integration, which was extend by our work in order to 
employ hierarchies. [15] also uses hierarchies for improving the efficiency of 
diagnosis but applies a different notion of diagnosis by defining a diagnosis as a 
logical consequence of a theory. Different approaches to diagnosis which avoid the 
computation of conflict sets were proposed by [3] and [18]. They improve the 
underlying theorem proving algorithms such that diagnoses can be computed 
efficiently. Note, that our goal was to reuse specialized problem solvers, which are 
optimized to solve complex configuration problems and not to provide conflict sets of 
explanations. The incorporation of diagnosis techniques from [3] and [18] without 
degrading the performance of the configurators remains an interesting open issue. 
 

8 Conclusion 

The demand for (AI-based) product configuration technology is steadily 
increasing, but for the validation and maintenance task we can find only limited 
support in nowadays systems. For these tasks it was shown how techniques from 
model-based diagnosis can support the knowledge engineer in validating even more 
complex knowledge bases using an approach that exploits hierarchical structure in the 
knowledge base itself. 
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